As food costs continue to rise and a global food crisis looms on the horizon, it’s staggering to think that some 30-40 percent of America’s food supply ends up in landfills, mostly due to spoilage. At the same time, the World Health Organization estimates that foodborne illness from microbial contamination causes about 420,000 deaths per year worldwide.
Inspired by battlefield medicine, scientists have developed an antimicrobial food wrap that reduces food waste and foodborne illness.
(Source: Disease Biophysics Group/Harvard Seas)
What if there were a way to package fresh foods that could extend their shelf life and eliminate microbial contamination? Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences and the Harvard T.H. Chan School of Public Health have developed a biodegradable, antimicrobial food packaging system that does both.
“One of the biggest challenges in the food supply is the distribution and viability of the food items themselves,” said Kit Parker, the Tarr Family Professor of Bioengineering and Applied Physics at SEAS and senior author of the paper. “We are harnessing advances in materials science and materials processing to increase both the longevity and freshness of the food items and doing so in a sustainable model.”
Surprisingly, the new food packing system has its roots in battlefield medicine. For more than a decade, Parker and his Disease Biophysics Group have been developing antimicrobial fibers for wound dressings. Their fiber manufacturing platform, known as Rotary Jet-Spinning (RJS), was designed specifically for the purpose.
RJS works likes a cotton candy machine — a liquid polymer solution is loaded into a reservoir and pushed out through a tiny opening by centrifugal force as the device spins. As the solution leaves the reservoir, the solvent evaporates, and the polymers solidify to form fibers, with controlled diameters ranging from microscale to nanoscale.
The idea to translate the research from wound dressing to food packing was born of a collaboration with Philip Demokritou, the former co-Director of the Center for Nanotechnology and Nanotoxicology (NanoCenter) at the Harvard’s Chan School. The NanoCenter is a joint initiative between Harvard and Nanyang Technological University of Singapore.
“As it turned out, wound dressings have the same purpose, in some ways, as food packaging — sustaining tissues, protecting them against bacteria and fungi, and controlling moisture,” said Huibin Chang, a postdoctoral fellow at Seas and first author of the paper.
To make the fibers food-safe, the team turned to a polymer known as pullulan. Pullulan is an edible, tasteless and naturally occurring polysaccharide commonly used in breath fresheners and mints.
The researchers dissolved the pullulan polymer in water and mixed it with range of naturally derived antimicrobial agents, including thyme oil, nisin, and citric acid. The solution is then spun in an RJS system and the fibers are deposited directly on a food item. The researchers demonstrated the technique by wrapping an avocado with pullulan fibers. The result resembles a fruit wrapped in spiderweb.
The research team compared their RJS wrapping to standard aluminum foil and found a substantial reduction of contamination by microorganisms, including E.coli, L. innocua (which causes listeria), and A. fumigatus (which can cause disease in people who are immunocompromised).
“The high surface-to-volume ratio of the coating makes it much easier to kill dangerous bacteria because more bacteria are coming into contact with the antimicrobial agents than in traditional packaging,” said John Zimmerman, a postdoctoral fellow at Seas and co-author of the paper.
The team also demonstrated that their fiber wrapping increased the shelf life of avocado, a notoriously finnicky fruit that can turn from ripe to rotten in a matter of hours. After seven days on a lab bench, 90 percent of unwrapped avocados were rotten while only 50 percent of avocados wrapped in antimicrobial pullulan fibers rotted.
The wrapping is also water soluble and biodegradable, rinsing off without any residue on the avocado surface.
Making Food More Sustainable
This antimicrobial, biodegradable food packing system is not the Disease Biophysics Group’s first foray into making our food supply system more sustainable.
Parker’s group has used their RJS system to grow animal cells on edible gelatin scaffolds that mimic the texture and consistency of meat. That technology was licensed by Tender Food, a Boston-based startup that aims to combat the enormous environmental impact of the meat industry by developing a new generation of plant-based alternative meat products that have the same texture, taste, and consistency as real meat.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
The lab’s latest innovations in food packaging may also soon enter commercial development. Harvard Office of Technology Development has protected the intellectual property relating to this project and is now exploring commercialization opportunities with Parker’s lab.
“One of my research group’s the long-range goals is reducing the environmental footprint of food,” said Parker. “We’ve done that by building more sustainable food to now packaging the food in a sustainable way that can reduce food waste.”