German China

Nobel Prize in Chemistry 2019

The Royal Swedish Academy of Sciences Honours Inventors of Lithium-Ion Batteries

| Editor: Alexander Stark

The Nobel Prize in Chemistry 2019 goes to the developers of the lithium-ion battery.
The Nobel Prize in Chemistry 2019 goes to the developers of the lithium-ion battery. (Source: The Royal Swedish Academy of Sciences)

The Royal Swedish Academy of Sciences awards the Nobel Prize for Chemistry 2019 to John B. Goodenough, M. Stanley Whittingham and Akira Yoshino for the development of lithium-ion batteries.

Oslo/Sweden — Lithium-ion batteries are used globally to power the portable electronics that we use to communicate, work, study, listen to music and search for knowledge. Lithiumion batteries have also enabled the development of long-range electric cars and the storage of energy from renewable sources, such as solar and wind power.

The foundation of the lithium-ion battery was laid during the oil crisis in the 1970s. Stanley Whittingham worked on developing methods that could lead to fossil fuel-free energy technologies. He started to research superconductors and discovered an extremely energy-rich material, which he used to create an innovative cathode in a lithium battery. This was made from titanium disulphide which, at a molecular level, has spaces that can house – intercalate – lithium ions. The battery’s anode was partially made from metallic lithium, which has a strong drive to release electrons. This resulted in a battery that literally had great potential, just over two volts. However, metallic lithium is reactive and the battery was too explosive to be viable.

Based on the Goodenough cathode, Akira Yoshino developed the first commercially viable lithium-ion battery in 1985.
Based on the Goodenough cathode, Akira Yoshino developed the first commercially viable lithium-ion battery in 1985. (Source: The Royal Swedish Academy of Sciences)

John Goodenough predicted that the cathode would have even greater potential if it was made using a metal oxide instead of a metal sulphide. After a systematic search, in 1980 he demonstrated that cobalt oxide with intercalated lithium ions can produce as much as four volts. This was an important breakthrough and would lead to much more powerful batteries.

With Goodenough’s cathode as a basis, Akira Yoshino created the first commercially viable lithium-ion battery in 1985. Rather than using reactive lithium in the anode, he used petroleum coke, a carbon material that, like the cathode’s cobalt oxide, can intercalate lithium ions. The result was a lightweight, hardwearing battery that could be charged hundreds of times before its performance deteriorated. The advantage of lithium-ion batteries is that they are not based upon chemical reactions that break down the electrodes, but upon lithium ions flowing back and forth between the anode and cathode.

Lithium-ion batteries have revolutionised our lives since they first entered the market in 1991. They have laid the foundation of a wireless, fossil fuel-free society, and are of the greatest benefit to humankind.

The Laureates of 2019

John B. Goodenough, born 1922 in Jena, Germany. Ph.D. 1952 from the University of Chicago, USA. Virginia H. Cockrell Chair in Engineering at The University of Texas at Austin, USA.

M. Stanley Whittingham, born 1941 in the UK. Ph.D. 1968 from Oxford University, UK. Distinguished Professor at Binghamton University, State University of New York, USA.

Akira Yoshino, born 1948 in Suita, Japan. Ph.D. 2005 from Osaka University, Japan. Honorary Fellow at Asahi Kasei Corporation, Tokyo, Japan and professor at Meijo University, Nagoya, Japan.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Contact us via: support.vogel.de/ (ID: 46175511 / Laborpraxis Worldwide)