German China

Feline Preferences Improving Cat Food Flavors with the Help of Feline Taste-Testers

Source: American Chemical Society 2 min Reading Time

Related Vendors

Cats can be fussy eaters, but new research might make mealtime easier. Scientists have discovered that felines prefer flavors with more free amino acids, which give their food a savory, fatty taste.

Using chicken-liver-based sprays, scientists found that cats favored these enriched flavors over others. (Source:  free licensed /  Pixabay)
Using chicken-liver-based sprays, scientists found that cats favored these enriched flavors over others.
(Source: free licensed / Pixabay)

Cats are notoriously picky eaters. But what if we could design their foods around flavors that they’re scientifically proven to enjoy? Researchers publishing in ACS’ Journal of Agricultural and Food Chemistry used a panel of feline taste-testers to identify favored flavor compounds in a series of chicken-liver-based sprays. The cats particularly enjoyed the sprays that contained more free amino acids, which gave their kibble more savory and fatty flavors.

Cats have a more acute sense of smell than humans, and the aroma of their food plays a big role in whether they’ll eat or snub what their owner serves for dinner. Feline palates are also more sensitive to umami (savory) flavors than humans, and they can’t taste sweetness. While meat-flavored food attractant sprays can help improve the scent and tastiness of dry kibble, the exact correlation between volatile flavor compounds and palatability is not well understood. Additionally, previous studies in this area lack input from a very important focus group: actual cats! So, Shiqing Song and colleagues relied on the expertise of a panel of 10 hungry adult cats to evaluate a series of food sprays containing different volatile flavor compounds.

To prepare their fragrant sprays, the researchers homogenized and heat-treated chicken livers. Then, they broke down proteins in the liver paste to various degrees using enzymes to produce four different food attractants. Song’s team identified over 50 different flavor compounds across the sprays, ranging from tropical and floral to sweaty and rubbery. For the taste test, the researchers coated commercially available cat food with chicken fat and then sprayed it with one of the four chicken liver attractants. The samples were presented to the cats alongside a control food treated with a different, commercially available attractant. The team observed which bowl the cats chose first and how much food they ate throughout the day.

The researchers found that most cats preferred and ate more of the foods sprayed with their attractants, particularly the sprays with proteins that were further broken-down by the enzymes and contained more free amino acids. These compounds are important flavor precursors that can undergo the Maillard reaction, which likely produced many different aroma-enhancing compounds during the heat treatment step. The favored foods contained more mushroom and fatty flavors as well, while the less-enjoyed foods featured acidic- and sweet-tasting compounds, possibly because fewer Maillard reactions occurred. This work could help inform future cat food formulations and increase your chances of choosing a kibble your finicky feline might enjoy.

Original Article: Generation of Olfactory Compounds in Cat Food Attractants: Chicken Liver-Derived Protein Hydrolysates and Their Contribution to Enhancing Palatability; Journal of Agricultural and Food Chemistry; DOI:10.1021/acs.jafc.4c02871

(ID:50121289)

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy. The consent declaration relates, among other things, to the sending of editorial newsletters by email and to data matching for marketing purposes with selected advertising partners (e.g., LinkedIn, Google, Meta)

Unfold for details of your consent