German China

Water Electrolysis Green Hydrogen Production: Scientists Successfully Split Seawater without Pre-Treatment

Source: University of Adelaide

An international team of researchers led by the University of Adelaide’s Professor Shizhang Qiao and Associate Professor Yao Zheng from the School of Chemical Engineering has succeeded in splitting green hydrogen from seawater without pre-treatment.

A team of researchers split natural seawater into oxygen and hydrogen with nearly 100 percent efficiency.
A team of researchers split natural seawater into oxygen and hydrogen with nearly 100 percent efficiency.
(Source: free licensed / Pixabay)

For the production of green hydrogen, current electrolysers are operated with highly purified water electrolyte. Increased demand for hydrogen to partially or totally replace energy generated by fossil fuels will significantly increase scarcity of increasingly limited freshwater resources. Seawater is an almost infinite resource and is considered a natural feedstock electrolyte. This is more practical for regions with long coastlines and abundant sunlight. However, it isn’t practical for regions where seawater is scarce.

A team of scientists led by University of Adelaide’s Professor Shizhang Qiao and Associate Professor Yao Zheng has split natural seawater into oxygen and hydrogen with nearly 100 percent efficiency, to produce green hydrogen by electrolysis, using a non-precious and cheap catalyst in a commercial electrolyser. The work provides a solution to directly utilise seawater without pre-treatment systems and alkali addition, which shows similar performance as that of existing metal-based mature pure water electrolyser.

“We used seawater as a feedstock without the need for any pre-treatment processes like reverse osmosis desolation, purification, or alkalisation,” said Associate Professor Zheng. “The performance of a commercial electrolyser with our catalysts running in seawater is close to the performance of platinum/iridium catalysts running in a feedstock of highly purified deionised water.”

Seawater electrolysis is still in early development compared with pure water electrolysis because of electrode side reactions, and corrosion arising from the complexities of using seawater. “It is always necessary to treat impure water to a level of water purity for conventional electrolysers including desalination and deionisation, which increases the operation and maintenance cost of the processes,” said Associate Professor Zheng.

The team will work on scaling up the system by using a larger electrolyser so that it can be used in commercial processes such as hydrogen generation for fuel cells and ammonia synthesis.

References: Direct seawater electrolysis by adjusting the local reaction environment of a catalyst; Nature Energy; DOI:10.1038/s41560-023-01195-x

(ID:49047031)

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy.

Unfold for details of your consent