Glioblastoma is an incurable and fatal type of brain cancer. In a large-scale drug screening, the antidepressant Vortioxetine emerged as one of the most effective agents against these types of cancer cells. Clinical trials are already in the planning phase at the University Hospital Zurich.
Glioblastoma cells under the microscope
(Source: Sohyon Lee & Berend Snijder ETH Zurich)
Glioblastoma is a particularly aggressive brain tumour that at present is incurable. Cancer doctors can extend patients’ life expectancy through operations, radiation, chemotherapy or surgical interventions. Nevertheless, half of patients die within twelve months of diagnosis.
Drugs that are effective against brain tumours are difficult to find, as many cancer drugs often can’t cross the blood-brain barrier to reach the brain. This limits the choice of possible treatments. Neuro-oncologists have thus been searching intensively for some time to find better drugs that can reach the brain and eliminate the tumour.
Researchers led by ETH Zurich Professor Berend Snijder have now found a substance that effectively combats glioblastomas, at least in the laboratory: an antidepressant called vortioxetine. Scientists know that this inexpensive drug, which has already been approved by agencies such as the FDA in the U.S. and Swissmedic, is capable of crossing the blood-brain barrier.
Snijder’s postdoc and lead author of the study, Sohyon Lee found it using pharmacoscopy, a special screening platform that the researchers have developed at ETH Zurich over the past years. The study findings were recently published in the journal Nature Medicine. In this study, the ETH Zurich researchers worked closely with colleagues from various hospitals, in particular with the group under neurologists Michael Weller and Tobias Weiss at the University Hospital Zurich (USZ).
Testing Hundreds of Substances Simultaneously
With pharmacoscopy, ETH Zurich researchers can simultaneously test hundreds of active substances on living cells from human cancer tissue. Their study focused primarily on neuroactive substances that cross the blood-brain barrier, such as antidepressants, Parkinson’s medication and antipsychotics. In total, the research team tested up to 130 different agents on tumour tissue from 40 patients.
To determine which substances, have an effect on the cancer cells, the researchers used imaging techniques and computer analysis. Previously, Snijder and his team had used the pharmacoscopy platform only to analyse blood cancer and derived treatment options from this. Glioblastomas are the first solid tumours that they have systematically investigated using this method with a view to use existing drugs for new purposes.
For the screening, Lee analysed fresh cancer tissue from patients who had recently undergone surgery at the University Hospital Zurich. The ETH Zurich researchers then processed this tissue in the laboratory and screened it on the pharmacoscopy platform. Two days later, the researchers obtained results showing which agents worked on the cancer cells and which did not.
The results made it clear that some, but not all, of the antidepressants tested were unexpectedly effective against the tumour cells. These drugs worked particularly well when they quickly triggered a signalling cascade, which is important for neuronal progenitor cells, but also suppresses cell division. Vortioxetine proved to be the most effective antidepressant.
The ETH Zurich researchers also used a computer model to test over a million substances for their effectiveness against glioblastomas. They discovered that the joint signalling cascade of neurons and cancer cells plays a decisive role and explains why some neuroactive drugs work while others don’t.
In the last step, researchers at the University Hospital Zurich tested vortioxetine on mice with a glioblastoma. The drug also showed good efficacy in these trials, especially in combination with the current standard treatment.
The group of ETH Zurich and USZ researchers is now preparing two clinical trials. In one, glioblastoma patients will be treated with vortioxetine in addition to standard treatment (surgery, chemotherapy, radiation). In the other, patients will receive a personalised drug selection, which the researchers will determine for each individual using the pharmacoscopy platform.
Drug Widely Available and Inexpensive
“The advantage of vortioxetine is that it is safe and very cost-effective,” says Michael Weller, Professor at the University Hospital Zurich, Director of the Department of Neurology and coauthor of the study published in Nature Medicine. “As the drug has already been approved, it doesn’t have to undergo a complex approval procedure and could soon supplement the standard therapy for this deadly brain tumour.” He hopes that oncologists will be able to use it soon.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
However, he cautions patients and their relatives against obtaining vortioxetine themselves and taking it without medical supervision. “We don’t yet know whether the drug works in humans and what dose is required to combat the tumour, which is why clinical trials are necessary. Self-medicating would be an incalculable risk.”
Snijder, too, warns against rushing to use the antidepressant on glioblastomas: “So far, it’s only been proven effective in cell cultures and in mice.”
Nevertheless, he believes that this study has achieved an ideal result: “We started with this terrible tumour and found existing drugs that fight against it. We show how and why they work, and soon we’ll be able to test them on patients.” Should vortioxetine prove effective, this will be the first time in recent decades that an active substance has been found to improve the treatment of glioblastoma.
Original Article: High-throughput identification of repurposable neuroactive drugs with potent anti-glioblastoma activity; Nature Medicine; DOI:10.1038/s41591-024-03224-y