Dartmouth researchers have developed a self-powered pump that uses natural light and chemistry to target and remove specific water pollutants, according to a new report in the journal Science.
Experimental setup for a light-activated pump (center) developed by Dartmouth researchers. The blue light in the right side of the filter shows the filtration and capture of chlorides and bromides by synthetic molecules the researchers designed to target specific pollutants.
(Source: Ivan Aprahamian)
Tiny molecular machines in humans carry out much of the work that occurs within cells, from replicating DNA to ferrying materials across the cell membrane. For decades, scientists have tried to replicate these miniaturized workhorses outside of the body, with dreams of applying them to tasks like environmental cleanup, drug delivery, and the diagnosis and treatment of disease.
But artificial molecular machines have proven easier to design on paper than to implement in real life. In a new study in Science, researchers offer a demonstration of their potential eight years after the Nobel Prize was awarded to three chemists for their work on molecular machines.
Researchers show that a synthetic receptor designed to both capture and release negatively charged ions, or anions, can move target molecules against a concentration gradient in solution, fueled only by natural light.
This is a proof of concept that you can use a synthetic receptor to convert light energy into chemical potential for removing a contaminant from a waste source.
Ivan Aprahamian, professor and chair of the Department of Chemistry at Dartmouth
The pump is currently calibrated to the pollutants chloride and bromide, but the researchers are working to expand its use to target other anion-rich pollutants such as radioactive waste and the phosphates and nitrates in agricultural runoff that cause massive dead zones, the study's senior author, Ivan Aprahamian, professor and chair of the Department of Chemistry at Dartmouth, says.
“Ideally, you can have multiple receptors in the same solution, and you can activate them with different wavelengths of light,” Aprahamian says. “You can target and collect each of these anions separately.”
The synthetic receptor's unusual ability to both trap and discharge negatively charged molecules allowed the researchers to control the flow of chloride ions from a low-concentration solution on one end of a U-shaped tube, to a high-concentration solution on the other end. Over a 12-hour period, the study reports, they moved 8 % of chloride ions against the concentration gradient across a membrane embedded with the synthetic receptors.
The researchers focused on chloride for two reasons. During winter, stormwater laden with road salt raises chloride levels in waterways, causing harm to plants and animals. Second, the transport of chloride ions also plays a key role in healthy cell functioning. The disease cystic fibrosis is caused by cells being unable to pump out excess chloride. The trapped ions cause dehydration in cells, leading to a buildup of thick mucus in the lungs, among other organs.
In absolute terms, the chloride ions were driven almost 1.4 inches — the width of the membrane separating both ends of the tube. Relative to the receptor's tiny size, they covered an impressive distance, fueled by light alone. “It's the equivalent of kicking a soccer ball the length of 65,000 football fields,” Aprahamian says.
Aprahamian's lab has long focused on a class of synthetic compounds known as hydrazones, which switch on and off when exposed to light. During the CovidVID pandemic, PhD student Baihao Shao came up with the idea to enhance the hydrazone receptor so that it could both collect and release target anions when switched on and off.
Aprahamian tried to dissuade him. “I told him that while it is a great idea, I do not think it will be competitive with the other impressive photoswitchable receptors in the literature,” he says. “Luckily, Baihao ignored me, and he went ahead and actually designed the receptor.”
Not only can the receptor be controlled by a renewable source of energy — light — it is relatively easy to make and modify, Aprahamian says. Researchers created the receptor by stitching them together using “click chemistry,” a Nobel Prize-winning technique that chemist Barry Sharpless '63 helped invent years after graduating from Dartmouth.
In another Nobel connection, the study demonstrates the potential of molecular machines eight years after three chemists received the 2016 Nobel Prize in Chemistry for their work developing synthetic versions. Molecular machines are abundant in nature, powered by ATP in animal cells, and by the sun, in plant cells. In humans, tiny molecular machines carry out much of the work that occurs within cells, from replicating DNA to ferrying materials across the cell membrane.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
For decades, scientists have tried to replicate these miniaturized workhorses outside of the body, with dreams of applying them to tasks like environmental cleanup, drug delivery, and the diagnosis and treatment of disease. But artificial molecular machines have proven easier to design on paper than to implement in real life.
“We want to mimic such biological processes, using sunlight as the energy source to create autonomous and self-sustaining filtration systems,” Aprahamian says.
Original Article: A molecular anion pump; Science; DOI:10.1126/science.adp3506