Researchers have developed a revolutionary pressure sensor technology called ‘eAir’ which has the potential to transform the way in which minimally-invasive surgeries and implantable sensors are carried out.
Assoc Prof Benjamin Tee (centre), together with Dr Cheng Wen (left) and Ms Wang Xinyu (right), have developed a novel aero-elastic pressure sensor, called ‘eAir’ (gold strips on the panel held by Assoc Prof Tee).
(Source: NUS)
Queenstown/Singapore – Researchers at the National University of Singapore (NUS) have developed a novel aero-elastic pressure sensor, called ‘eAir’. This technology can be applied to minimally-invasive surgeries and implantable sensors by directly addressing the challenges associated with existing pressure sensors.
The eAir sensor promises increased precision and reliability across medical applications. It can potentially transform laparoscopic surgeries by enabling tactile feedback for surgeons, allowing more precise manipulation of patient tissues. In addition, the sensor can improve patient experiences by offering a less invasive means of monitoring intracranial pressure (ICP), a key health metric for individuals with neurological conditions.
Led by Associate Professor Benjamin Tee from the NUS College of Design and Engineering and NUS Institute for Health Innovation & Technology, the research team’s findings were recently published in scientific journal Nature Materials on 17 August 2023.
From lotus leaf to laboratory: Harnessing nature’s design
Conventional pressure sensors frequently struggle with accuracy. They have trouble delivering consistent readings, often returning varying results when the same pressure is applied repeatedly and can overlook subtle changes in pressure — all of which can lead to significant errors. They are also typically made from stiff and mechanically inflexible materials.
To address these challenges in pressure sensing, the NUS team drew inspiration from a phenomenon known as the 'lotus leaf effect' — a unique natural phenomenon where water droplets effortlessly roll off the leaf’s surface, made possible by its minuscule, water-repelling structures. Mimicking this effect, the team has engineered a pressure sensor designed to significantly improve the sensing performance.
“The sensor, akin to a miniature ‘capacity meter’, can detect minute pressure changes — mirroring the sensitivity of a lotus leaf to the extremely light touch of a water droplet,” explained Assoc Prof Tee.
Employing an innovative ‘air spring’ design, the eAir sensor houses a trapped layer of air, forming an air-liquid interface upon contact with the sensor’s liquid. As external pressure increases, this air layer compresses. A surface treatment results in a frictionless movement of the interface within the sensor, triggering a change in electrical signals that accurately reflects the exerted pressure. Using this design, the natural water-repelling capabilities of the lotus leaf have been reimagined as a simple yet elegant pressure-sensing tool.
The eAir devices can be made relatively small – at a few millimetres in size – and this is comparable to existing pressure sensors.
Potential game-changing advancement for minimally invasive surgeries
The real-world applications of this novel technology are wide-ranging. For instance, in laparoscopic surgeries where precise tactile feedback is indispensable, incorporating eAir sensors could lead to safer surgical procedures, ultimately enhancing patient recovery and prognosis.
“Conducting surgeries with graspers presents its unique challenges. Precise control and accurate perception of the forces applied are critical, but traditional tools can sometimes fall short, making surgeons rely heavily on experience, and even intuition. The introduction of soft and readily integrable eAir sensors, however, could be a game-changer,” said Assoc Prof Tee, who is also from the NUS Department of Materials Science and Engineering.
“When surgeons perform minimally-invasive surgery such as laparoscopic or robotic surgery, we can control the jaws of the graspers, but we are unable to feel what the end-effectors are grasping. Hence, surgeons have to rely on our sense of sight and years of experience to make a judgement call about critical information that our sense of touch could otherwise provide,” explained Dr Kaan Hung Leng, Consultant, Department of General Surgery at the National University Hospital, Ng Teng Fong General Hospital and NUS Yong Loo Lin School of Medicine.
Dr Kaan, who is not involved in the research project, elaborated, “The haptic or tactile feedback provided by smart pressure sensors has the potential to revolutionize the field of minimally-invasive surgery. For example, information about whether a tissue that is being grasped is hard, firm or soft provides an additional and important source of information to aid surgeons in making prudent decisions during a surgery. Ultimately, these intra-operative benefits have the potential to translate into improved surgical and patient outcomes.”
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Additionally, eAir presents an opportunity to improve the process of monitoring intracranial pressure — the pressure within the skull that can influence brain health. Similarly, by offering a minimally invasive solution, the technology could transform patient experiences in the management of brain-related conditions, ranging from severe headaches to potential brain damage.
Unfolding the future of smart sensing
The NUS team is laying the groundwork for collaborations with key players in the medical field. At the same time, they have filed a patent for the eAir sensor technology in Singapore, and aims to translate the technology for real-world applications.
“We want to further refine the eAir sensor to enhance its performance by exploring various new materials and microstructural designs,” shared Assoc Prof Tee.
The team envisions the eAir technology being weaved into a diverse tapestry of applications for liquid environments.