German China

Switzerland: Regulatory Proteins

New Therapies for Diabetes Could be within Reach

| Editor: Alexander Stark

A pancreatic islet of an insulin deficient mouse (cells producing insulin are virtually absent).
A pancreatic islet of an insulin deficient mouse (cells producing insulin are virtually absent). (Source: Unige)

By identifying a protein that helps regulate blood glucose and lipids, researchers hope for the rapid development of treatments more effective than current insulin therapy.

Geneva/Switzerland — Insulin, a hormone essential for regulating blood sugar and lipids, is normally produced by pancreatic β cells. In many people with diabetes, however, pancreatic cells are not (or no longer) functional, causing a chronic and potentially fatal insulin deficiency that can only be controlled through daily insulin injections. However, this approach has serious adverse effects, including an increased risk of life-threatening hypoglycaemia, and it does not restore metabolic balance. In order to improve therapy, researchers at the University of Geneva (Unige), Switzerland, have identified a protein called S100A9 which, under certain conditions, seems to act as a blood sugar and lipid regulator while avoiding the most harmful side effects of insulin. This discovery, that can be read in Nature Communications, paves the way for better treatment of diabetes and could significantly improve the quality of life for tens of millions of people affected by insulin deficiency.

3D Visualisation: New Tool in Diabetes Research

Molecular Medicine

3D Visualisation: New Tool in Diabetes Research

20/03/2017 - Swedish scientists have developed datasets that are able to map the three-dimensional distribution and volume of the insulin-producing cells in the pancreas. The visual and quantitative data of this development could become a valuable reference resource for diabetes researchers. The Umeå University researchers are publishing these datasets in the Nature Research journal Scientific Data. read...

As early as 2010, Roberto Coppari’s team, a professor at the Diabetes Centre of the Unige Faculty of Medicine, highlighted the gluco- and lipid-regulatory properties of leptin, a hormone involved in hunger control. However, leptin has proved difficult to use pharmacologically in human beings due to the development of leptin resistance. In order to overcome this problem, Roberto Coppari's team shifted their focus on the metabolic mechanisms triggered by leptin rather than on the hormone itself.

On the left, a pancreatic islet of a healthy mouse (in red, cells producing insulin). On the right, a pancreatic islet of an insulin deficient mouse (cells producing insulin are virtually absent).
On the left, a pancreatic islet of a healthy mouse (in red, cells producing insulin). On the right, a pancreatic islet of an insulin deficient mouse (cells producing insulin are virtually absent). (Source: Unige)

An Effective Protein Despite its Bad Reputation

The scientists observed changes in the blood of insulin-deficient mice to whom they administered leptin and noted the abundant presence of the S100A9 protein. “This protein has a bad reputation because, when it binds to its sister protein S100A8, it creates a complex called calprotectin that causes the symptoms of many inflammatory or autoimmune diseases,” says Giorgio Ramadori, a researcher at the Diabetes Centre of the UNIGE Faculty of Medicine and the first author of this work. “However, by over-expressing S100A9, we can, paradoxically, reduce its harmful combination with S100A8, hence dampening calprotectin levels.”

The researchers then administered high doses of S100A9 to their insulin-deficient diabetic mice and found improved glucose management and better control of ketones and of lipids, two metabolic abnormalities that are common in people with insulin deficiency.

In order to better understand how this mechanism translates to human beings, Professor Coppari’s team is currently conducting a clinical observation study, in collaboration with the Geneva University Hospitals, in patients with type 1 and type 2 diabetes presenting very high glucose and ketones levels. They want to identify the correlations between the level of S100A9 in the blood and the severity of symptoms. “In human beings, previous studies already indicated that increased S100A9 levels correlate with reduced diabetes risks; hence, these results further bolster the clinical relevance of our data. As such, we are currently working to progress to phase I human clinical trials to directly test the safety and efficacy of S100A9 in insulin deficiency”, says Roberto Coppari.

Night Owls More Likely to Suffer from Heart Diseases and Type 2 Diabetes

UK: Analysis of Chronotypes

Night Owls More Likely to Suffer from Heart Diseases and Type 2 Diabetes

04/12/2018 - In the first ever international review of studies analysing whether being an early riser or a night owl can influence your health, researchers have uncovered a growing body of evidence indicating an increased risk of ill health in people with an evening preference as they have more erratic eating patterns and consume more unhealthy foods. read...

Towards Combined Treatments

The team then made a second discovery: S100A9 protein only appears to work in the presence of TLR4, a receptor located on the membrane of certain cells, including adipocytes or immune system cells. The researchers are currently working on a treatment that would combine low doses of insulin and S100A9 to better control glucose and ketones and limit high-dose insulin side effects. They also want to decipher the exact role of TLR4 in order to offer a therapeutic strategy that achieves the delicate balance of optimal blood glucose, ketone and lipid control.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Contact us via: support.vogel.de/ (ID: 46187935 / Laborpraxis Worldwide)