Related Vendor
Literatur
[1] Li, S., et al., Enhanced protein and biochemical production using CRISPRi-based growth switches. Metab Eng, 2016. 38: p. 274-284.
[2] Shi, S., et al., A highly efficient single-step, markerless strategy for multi-copy chromosomal integration of large biochemical pathways in Saccharomyces cerevisiae. Metab Eng, 2016. 33: p. 19-27.
Anzeige
[3] Altenbuchner, J., Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System. Appl Environ Microbiol, 2016. 82(17): p. 5421-7.
[4] Baumgart, M., et al., Corynebacterium glutamicum Chassis C1*: Building and Testing a Novel Platform Host for Synthetic Biology and Industrial Biotechnology. ACS Synth Biol, 2017.
[5] Binder, S., et al., A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012. 13(5).
[6] Unthan, S., et al., Bioprocess Automation on a Mini Pilot Plant enables Fast Quantitative Microbial Phenotyping. Microb Cell Fact, 2015. 14(32).
[7] Kappelmann, J., et al., Comprehensive and Accurate Tracking of Carbon Origin of LC-Tandem Mass Spectrometry Collisional Fragments for 13C-MFA. Anal Bioanal Chem, 2016. 409(9): p. 2309-2326.
[8] Noack, S., et al., The linkage between nutrient supply, intracellular enzyme abundances and bacterial growth: New evidences from the central carbon metabolism of Corynebacterium glutamicum. Journal of Biotechnology, 2017. 258: p. 13-24.
[9] Limberg, M.H., et al., Metabolic profile of 1,5-diaminopentane producing Corynebacterium glutamicum under scale-down conditions: Blueprint for robustness to bioreactor inhomogeneities. Biotechnol Bioeng, 2017. 114(3): p. 560-575.
[10] Wendisch, V.F., et al., The flexible feedstock concept in Industrial Biotechnology: Metabolic engineering of Escherichia coli, Corynebacterium glutamicum, Pseudomonas, Bacillus and yeast strains for access to alternative carbon sources. J Biotechnol, 2016. 234: p. 139-157.
[11] Brüsseler, C., et al., The myo-inositol/proton symporter IolT1 contributes to d-xylose uptake in Corynebacterium glutamicum. Bioresour Technol, 2017. 249: p. 953-961.
[12] Sieben, M., et al., Testing Plasmid Stability of Escherichia coli Using the Continuously Operated Shaken BIOreactor System. Biotechnology Progress, 2016. 32(6): p. 1418-1425.
[13] Radek, A., et al., Miniaturized and automated adaptive laboratory evolution: Evolving Corynebacterium glutamicum towards an improved D-xylose utilization. Bioresource Technology, 2017. 245: p. 1377-1385.
* A. Radek, H. Morschett, M. Oldiges, S. Noack: Forschungszentrum Jülich GmbH, Institut für Bio- und Geowissenschaften – IBG-1: Biotechnologie, 52428 Jülich/Germany
(ID:45277008)

