Scientists have discovered a new plant hormone that claims to boost plant growth by 30 %. The discovery is expected to prove beneficial for sustainable food security across diverse soils and crops.
(From left to right) Dr Omkar Kulkarni, currently a research scientist at the L’Oréal – SCELSE joint lab; Samantha Phua, PhD student at NUS and SCELSE; and Assoc Prof Sanjay Swarup, Principal Investigator at the Research Centre on Sustainable Urban Farming under the NUS Faculty of Science and Deputy Research Director at SCELSE.
(Source: SCELSE)
Queenstown/Singapore – Scientists from NUS and the Singapore Centre for Environmental Life Sciences Engineering (SCELSE) have uncovered one of nature’s most potent tool in an arsenal to combat today’s agricultural challenges: agro-microbials – or agro-chemicals of natural origin – that can enhance the synergy between crops and microbes, and ultimately improve crop yield and productivity.
In a study conducted over five years from 2018, the scientists discovered that a well-known protective hormone typically released by plants above ground during periods of stress – a volatile organic compound (VOC) known as methyl jasmonate (Meja) – possessed a hitherto unknown function. They found that Meja served as a shared, possibly secret, language that allows the plant to communicate with the surrounding layers of microorganisms embedded in the soil.
The research team has made three important discoveries:
Using a specially engineered airflow system, scientists have found, for the first time, that Meja is released underground by the plant roots in a volatile form;
The presence of volatile Meja triggers and enhances the formation of biofilms in bacteria situated at a distance from the plant roots; and
These bacteria in the biofilm release a different set of volatile compounds that can boost plant growth by up to 30 %.
The findings were detailed in the scientific paper titled ‘Volatile methyl jasmonate from roots signals the formation of host-beneficial biofilms by the soil microbiome’, which was published in the prestigious journal Nature Chemical Biology on 13 November 2023.
Associate Professor Sanjay Swarup, who is a Principal Investigator at the Research Centre on Sustainable Urban Farming (Surf) under the NUS Faculty of Science and a Deputy Research Director at SCELSE, said, “The impact of this discovery is manifold and key to sustainable agriculture. Harnessing these agricultural microbes will not only boost crop productivity, but also reduce the need for synthetic inputs and mitigate the environmental impact of modern farming practices.”
Having discovered nature’s own way of communication between plants and beneficial microbes, the research team has filed a patent for the use of this novel application to enhance it to improve the resilience and productivity of agricultural systems. The upshot of this could be a new generation of agro-chemicals or nature-structured chemicals which can be used to enhance the benefits for plants.
Agro-microbials can influence plant growth and address food security
As the world population is projected to reach 10 billion by 2050, ensuring food security for its inhabitants has become one of the most pressing challenges of this century. Singapore, for example, has set a “30 by 30” goal – to be able to produce 30 per cent of our nutritional needs by 2030.
To achieve these goals, agricultural productivity must urgently grapple with the effects of climate change, land degradation, and increasingly unpredictable weather events. Agro-microbials – and nature-based agrochemicals – are now emerging as a promising strategy for sustainable agriculture.
Agro-microbials encompass microbial communities associated with crops, and they serve critical functions of plant growth promotion, disease prevention, and nitrogen fixation. They also help to keep the soil fertile by breaking down organic matter, recycling nutrients, and creating humus to retain moisture. Diverse communities of agro-microbials can be found inside biofilms, where they are embedded in a self-produced matrix.
The ‘fragrance’ emitted by plant roots causes a positive, cascading effect
Fragrant Meja VOC can impact microbes from a distance. This highlights the fact that the signal can extend beyond the plant’s immediate rhizosphere (the niche surrounding plant roots where soluble and volatile molecules facilitate the communication between plants and the associated microbiota).
The paper’s joint first author, Dr. Omkar Kulkarni, who is now a research scientist at L’Oréal-SCELSE joint laboratory, said, “Plants can't talk like us, but they have their elegant ways of conversing over long distances. This exciting discovery will not only bring fundamental insights about plant-microbe interactions but also potentially pave the way for nature-based agrochemicals." Dr. Kulkarni conducted this research as part of his PhD work at the Department of Biological Sciences of the NUS Faculty of Science.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Dr. Mrinmoy Mazumder, an NUS research fellow at SCELSE and joint first author of the paper, added, “VOC-mediated communication between plants and microbes in the rhizosphere spans the distance, orchestrating nature's harmonious collaboration. This discovery holds fundamental and translational significance for the scientific community, offering opportunities to delve into mechanistic insights and develop tailored solutions for stress management in diverse crop varieties.”
This research was funded by SCELSE and supported by NUS.
Future Plans
As a follow-up from the initial findings, the team will further investigate the exact chemical nature of the compounds released by the soil microbial environment that stimulates plant growth. The team will also design an ecology-inspired microbial community to harness the new discovery of how plants enlist the help of beneficial soil microbes to trigger plant growth.