German China

Switzerland: Photonic System

Compact Laser System Detects Gases and Molecules in the Air

| Editor: Alexander Stark

The system developed by researchers at EPFL is considerably smaller than comparable solutions.
Gallery: 2 Pictures
The system developed by researchers at EPFL is considerably smaller than comparable solutions. (Source: EPFL)

Researchers at EPFL have come up with a new middle infrared light source that can detect greenhouse and other gases in the air, as well as molecules in a person’s breath. According to the developers, their system takes up considerably less space than the large ones typically used for such tasks.

Lausanne/Switzerland – The mid-infrared spectrum is especially useful for scientists because, at this wavelength range, light can detect particles that play an important role in the environment and in human health. Until now, however, infrared laser systems have proven difficult to transport because they involve complex, damage-prone hardware.

The new technology, developed by researchers at EPFL, could be a game-changer. Their compact system, which resembles a tiny suitcase, contains just two parts: a standard laser together with a photonic chip measuring a few millimeters across. The team took a commercially available fiber laser and combined it with a micrometer waveguide chip to reliably generate light waves in the mid-infrared spectrum. They then added a spectrometer to demonstrate the potential of this light source, successfully detecting the presence and concentration of acetylene, a colorless and highly flammable gas.

Rapid Test Detects Cause of Water Pollution

Austria: Water Safety

Rapid Test Detects Cause of Water Pollution

10/02/2019 - Methods for detecting the source of faecal water contamination using DNA have existed for some time. However, these methods were complicated, expensive and time consuming, requiring samples to be taken and then sent to a laboratory for genetic analysis. TU Wien has succeeded in developing a new, DNA-based rapid testing procedure that identifies the cause for water pollution quickly and economically. read...

The system uses a compact and robust fiber laser that emits light in a specific wavelength range. The beam is directed through a waveguide, measuring one micrometer (0.001 mm) across and half a millimeter long, which can alter the frequency of the light as it passes through. The system produces light in the mid-infrared spectrum, retaining 30 % of the original signal strength. The researchers can even tune the wavelength of the light by adjusting the waveguide’s geometry. According to Davide Grassani, one of the authors of the paper, this is the first time anyone has created a fully integrated spectroscopic laser source. It does away with the painstaking process of precisely aligning all the parts in a conventional laser system.

The breakthrough came after the team refined key aspects of the system’s design — the waveguide geometry and material, and the wavelength of the original laser source. “Coming up with such a simple yet efficient and sturdy system involved a lot of design work,” says Camille Brès, project coordinator and head of the Photonic Systems Laboratory, part of EPFL’s School of Engineering.

On-Chip Spectroscopy

This advancement paves the way for miniaturized mid-IR technologies — a wavelength range that scientists rarely get to work with. Once the scientists have developed the system further, they expect it to be used for instance as on-chip detectors that scientists can easily carry out into the field.

The technology draws on research conducted at the Photonic Systems Laboratory, headed by Camille Brès, and the Laboratory of Photonics and Quantum Measurements, headed by Tobias Kippenberg (STI/SB).

References: D. Grassani, E. Tagkoudi, H. Guo, C. Herkommer, F. Yang, T.J. Kippenberg and C.-S. Brès, “Mid infrared gas spectroscopy using efficient fiber laser driven photonic chip-based supercontinuum”, Nature Communications.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45850856 / Laborpraxis Worldwide)