German China

Biocompatible Materials 3D Laser Printing with Bioinks from Microalgae

Source: Heidelberg University 3 min Reading Time

Related Vendors

Heidelberg researchers successfully develop a new generation of biocompatible materials for additive manufacturing. By extracting biocompatible inks from species like Odontella aurita and Tetraselmis striata, the team has opened new possibilities for eco-friendly manufacturing of complex 3D microstructures.

A new ink system, based on the microalgae Odontella aurita and Tetraselmis striata, enables the manufacturing of complex 3D microstructures with high quality and precision.(Source:  Clara Vazquez-Martel)
A new ink system, based on the microalgae Odontella aurita and Tetraselmis striata, enables the manufacturing of complex 3D microstructures with high quality and precision.
(Source: Clara Vazquez-Martel)

Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as “biofactories” for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team led by Prof. Dr Eva Blasco, a scientist at the Institute for Molecular Systems Engineering and Advanced Materials (Imseam) of Heidelberg University, has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae. The microalgae-based materials could be used in future as the basis for implants or scaffolds for 3D cell cultures.

Among the additive manufacturing techniques, two-photon 3D laser printing offers particular advantages for manufacturing at the micro- and nanoscale. Owing to its remarkable resolution, it finds application in numerous fields including optics and photonics, microfluidics, and biomedicine. The process involves focusing a laser beam on a liquid, photoreactive resin, a so-called “ink”. At the focal point, the laser light activates special molecules known as photoinitiators and triggers a chemical reaction, causing local solidification of the ink.

To date, petrochemical-based polymers have been mainly used as inks for this highly precise 3D laser printing process. However, these polymers contribute to the depletion of fossil fuels and the emission of greenhouse gases and can also contain toxic components, as Prof. Blasco points out. Microalgae are particularly well suited as “biofactories” for the production of sustainable materials for 3D printing due to their rapid growth rate, CO2-fixation during cultivation, and biocompatibility. “Despite their advantages, microalgae have hardly been considered as raw materials for light-based 3D printing,” says Prof. Blasco, whose group conducts research at the interface of macromolecular chemistry, materials science, and 3D nanofabrication.

The research team succeeded for the first time in extracting biocompatible materials for high-resolution 3D laser printing from microalgae. For their experiments, the researchers selected two species — the diatom Odontella aurita and the green alga Tetraselmis striata — that contain particularly high levels of lipids in the form of triglycerides. The team extracted the triglycerides and functionalized them with acrylates to facilitate rapid curing under light irradiation. The photoactive green pigments present in the microalgae proved to be suitable as photoinitiators. When exposed to light, they trigger the chemical reaction that solidifies the ink into a three-dimensional structure. “In this way we avoid using potentially toxic additives like the photoinitiators used in conventional inks,” explains first author Clara Vazquez-Martel, a doctoral candidate in Eva Blasco’s research team at Imseam.

Using the new ink system, the researchers were able to produce different 3D microstructures with high precision, exhibiting complex features such as overhanging roofs and cavities. Using cell culture experiments, the researchers also investigated the biocompatibility of the microalgae-based inks. They prepared 3D microscaffolds on which the cells were cultured for about 24 hours. They observed a survival rate of almost 100 %. “Our results open up new possibilities not only for more sustainable 3D printing with light, but also for life science applications — from 3D cell cultures to biocompatible implants,” says Prof. Blasco.

The research was conducted within the Cluster of Excellence “3D Matter Made to Order”, a collaboration of Heidelberg University and the Karlsruhe Institute of Technology (KIT). This study involved researchers from Heidelberg, the KIT, and the Spanish Bank of Algae at the University of Las Palmas de Gran Canaria (ULPGC, Spain). The work was funded by the German Research Foundation, the Carl Zeiss Foundation, the Fonds der Chemischen Industrie, and the European Union in the framework of the European Territorial Cooperation Program. The research has been published in the journal “Advanced Materials”.

Original Article: Microalgae-Based Materials for 3D Printing with Light. Advanced Materials; Advanced Materials; DOI:10.1002/adma.202402786

(ID:50127786)

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy. The consent declaration relates, among other things, to the sending of editorial newsletters by email and to data matching for marketing purposes with selected advertising partners (e.g., LinkedIn, Google, Meta)

Unfold for details of your consent