Researchers at the Chalmers University of Technology have revealed that they have found a new way to extract the protein in sea lettuce, a type of seaweed, three times more efficiently than before. This opens up the possibility of producing seaweed burgers and protein smoothies from the sea in the near future.
Sea lettuce is grown in tanks at Tjärnö Marine Laboratory in Bouslän.
(Source: Sophie Steinhagen)
Gothenburg/Sweden – The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed also contains many other important nutrients, and is grown without needing to be watered, fertilized or sprayed with insecticides. However, the proteins are often tightly bound, and their full potential has not yet been realized on our plates. But now researchers at Chalmers University of Technology, in Sweden, have found a new way to extract these proteins three times more efficiently than before – and this progress paves the way for seaweed burgers and protein smoothies from the sea.
"It tastes like umami with a certain salty flavor, despite not containing such high levels of salt. I would say it's a great flavor enhancer for seafood dishes and products, but the possibilities to explore are endless. Why not protein smoothies or ‘blue burgers’ from the sea?" says João Trigo, PhD in Food Science at Chalmers, about the dark green powder, which is a concentrate of proteins from sea lettuce, scientifically known as Ulva fenestrata. Sea lettuce is a type of macroalgae, commonly called seaweed, which grows on rocks in calm waters, or free-floating on the surface, and resembles ordinary lettuce leaves in appearance.
The so-called protein shift – switching from red meat to more sustainable and healthy protein sources – is a way to reduce the climate impact of food production while providing everyone with a nutritious diet. Many alternative protein sources, mainly based on pea, soy and mushroom, are common in our grocery stores. But all the vegetarian protein that is found under the sea is still an untapped source.
The Cirkalg-project, led by Chalmers University of Technology, has explored the possibilities of developing processes that can create a new, “blue-green” food industry in Sweden, and make use of seaweed as a promising source of protein. Within the framework of the project, a newly published scientific study shows a unique way of extracting proteins from sea lettuce, so that it is now possible to extract three times more protein from the seaweed than was possible with previous methods.
"Our method is an important breakthrough, as it brings us closer to making it more affordable to extract these proteins, something that is done with pea and soy proteins today,” says João Trigo.
Contains several essential nutrients
In addition to essential proteins, sea lettuce contains several other substances of great nutritional value for humans, such as vitamin B12 and the same kind of omega-3 fatty acids found in oily fish, like salmon. People who do not eat animal products are at risk of developing a deficiency of vitamin B12, which is necessary for the body to form red blood cells, among other things. And the cultivation of sea lettuce has several advantages compared to land-growing proteins – such as the fact that the seaweed does not need to be watered, fertilized or sprayed with insecticides. Sea lettuce is also hardy and grows well under many different conditions, such as different salinity and access to nitrogen.
"Humanity will need to find and combine the intake of many more diversified protein sources than we have available in our diet today, to meet sustainability and nutritional requirements. Algae is a good addition to many of the products already on the market. We need all these solutions and so far, the sea-based possibilities, the so-called blue proteins, have been overlooked," says Ingrid Undeland, Professor of Food Science at Chalmers and coordinator of Cirkalg.
In addition to the newly published extraction method, the Chalmers researchers are working together with the University of Gothenburg to increase the actual protein content in the seaweed. By cultivating sea lettuce in process water from the seafood industry, the protein content can be increased significantly, while nutrients that would otherwise be lost are circulated back into the food chain. At Tjärnö Marine Laboratory (part of the University of Gothenburg) in northern Bohuslän in Sweden, a large number of successful cultivation experiments have been carried out within the Cirkalg-project, based on industrial water side currents.
"In the future, we also want to be able to make use of the parts of the algae that are not proteins, and that could be used in food, materials or for medical applications. The goal is that no molecules should go to waste, to achieve both sustainability and commercial opportunities," says Ingrid Undeland.
More about the extraction method
In addition to proteins that are water-soluble, sea lettuce also contains plenty of fat-soluble so-called membrane proteins. This means that the seaweed proteins are more complex to extract than, for example, soy and pea protein. In a first-step of the new process, the cell membranes of the sea lettuce are opened up in order to access the fat-soluble proteins. The different types of proteins are then extracted with water adjusted to a high pH, and in the next step, by making the solution acidic, the proteins are precipitated into aggregates that could then be separated from the water and utilized as a protein-rich ingredient. It was also seen that the marine omega-3 fatty acids were enriched in the protein ingredient, and a follow-up study confirmed that the same was true for vitamin B12. The new algae protein ingredient can thus help meet a wider range of nutritional needs compared to soy protein.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
The study A new method for protein extraction from sea lettuce (Ulva fenestrata) via surfactants and alkaline aqueous solutions was published in Food Chemistry. The study's authors are João Trigo, Sophie Steinhagen, Kristoffer Stedt, Annika Krona, Simone Verhagen, Henrik Pavia, Mehdi Abdollahi and Ingrid Undeland. At the time of the study, the researchers were active at Chalmers University of Technology, the University of Gothenburg and Rise - Research Institutes of Sweden.