A new examination of the way different tissues read information from genes has discovered that the brain and testes appear to be extraordinarily open to the use of many different kinds of code to produce a given protein. The researchers say the use of rare pieces of code may be another layer of control in the genome that could be essential to fertility and evolutionary innovation.
A translucent fruit fly larvae glows where a green fluorescent protein (GFP) is being expressed by codons that are rare in the fly genome. Only two tissues, the brain (left) and testis (right) are capable of expressing this version of GFP.
(Source: Fox Lab, Duke)
Durham/USA — A decade after solving the structure of DNA as a double helix of the bases A,C, T and G, Francis Crick went on to decode the intermediate step by which three of these letters are translated into a “codon,” the recipe for a single amino acid, the building block of protein.
What was striking at the time and still somewhat puzzling is that this layer of life’s code used 61 different three-letter codons to produce just 20 amino acids, meaning many codons were being used to describe the same thing.
“We’re taught in our biology classes that when you change from one version of the codon to the other, and it doesn't change the amino acid, that's called a silent mutation. And that implies that it doesn't matter,” said Don Fox, an associate professor of pharmacology and cancer biology in the Duke School of Medicine.
“Yet when researchers have sequenced all these different organisms, they found a hierarchy,” Fox said. “Some codons are really frequent and some are really rare.” And that distribution of codons can vary from one kind of tissue in an organism to another. Fox wondered if the rarities play a role in how, say, a liver cell does liver things and how a bone cell does bone things.
Fox and his team, headed by PhD student Scott Allen, wanted to zoom in on the rare codons, using their preferred model Drosophila melanogaster, the laboratory fruit fly. A growing body of work has shown that dissimilar tissues have varying ‘codon bias’ — that is, different frequencies of synonymous codons occurring in different tissues. Rare codons are known to slow down and even stop protein production and “genes with a lot of these rare codons make a lot less protein,” Fox said.
Fox was collaborating with colleague Christopher Counter, the George Barth Geller Distinguished Professor of Pharmacology at Duke to understand a gene called Kras, which is known to be a bad actor in pancreatic cancer especially, and which carries a lot of rare codons. Why, they wondered, would a cancer mutation have slowed down protein production, when normally a cancerous mutation makes more of something. “It turns out, the way Kras is designed, it should be very hard to make any of it,” Fox said.
Fox’s team developed a new way of analyzing tissue-specific codon usage to look at where and how rare codons can be used in the fruit fly, which has perhaps the best-known genome in science. They ran a series of experiments to vary which codons were included in the Kras gene and found that rare codons had a dramatic effect on how Kras controls signaling between cells. “I realized from this cancer collaboration that we could take similar approaches and apply them to my primary research question, which is how tissues know what they are,” Fox said.
In further experiments, they found that testes in flies — and in humans — are more tolerant of a high diversity of codons, but fly ovaries are not. The fly brain was also more tolerant of diverse codons.
One particular gene with a high number of rare codons, RpL10Aa, is evolutionarily newer and helps to build the ribosome, the protein-assembly machinery in the cell. Fox said it appears that this gene’s rare codons serve to limit its activity to just the more tolerant testes, and that, in turn, may be something critical to fertility.
“The way the testes seem to permit almost any gene being expressed, perhaps that makes it a breeding ground, if you will, for new genes,” Fox said. “The testes seems to be a place where younger genes tend to first be expressed. So we think it's sort of this more permissive tissue, and it lets new genes take hold.”
“What we think we’re seeing is that rare codons are a way to limit the activity of this evolutionarily young gene to the testes,” Fox said. “That would make rare codons yet another layer of control and fine-tuning in the genes.”
The editors of eLife said “the work breaks new ground in identifying codon usage as a basis for tissue-specific gene expression in animals.”
References: “Distinct Responses to Rare Codons in Select Drosophila Tissues,” Scott R Allen, Rebeccah K Stewart, Michael Rogers, Ivan Jimenez Ruiz, Erez Cohen, Alain Laederach, Christopher M Counter, Jessica K Sawyer, Donald T Fox. eLife, May 6, 2022. DOI: 10.7554/eLife.76893 https://elifesciences.org/articles/76893
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.