Climate scientists have found that human activity has worsened specific weather events and made them more likely to occur. In a study, they have mentioned that weather forecasts can be used to show how human behavior is impacting extreme weather conditions.
In new studies of recent events in both the UK and U.S., they assessed the impact of global warming at a local scale and found that human activity both worsened specific weather events and made them more likely to occur.
(Source: Pixabay)
Oxford/UK – Oxford climate physicists, led by Professor Myles Allen, have, for the first time, demonstrated how state-of-the-art weather forecasts can be used to show how greenhouse gas emissions affect extreme weather. In new studies of recent events in both the UK and U.S., they assessed the impact of global warming at a local scale and found that human activity both worsened specific weather events and made them more likely to occur.
Their findings coincide with the United Nations “AI for Good Summit” in Geneva, where scientists from the Oxford Physics team lead sessions on how artificial intelligence and machine learning can improve regional forecasting of extreme weather and future climate predictions.
“We have shown for the first time that the same top-quality models used for weather forecasting, which are tested relentlessly every day, can be used to show the impacts of global warming,” said Professor Myles Allen, who leads the Oxford University Physics research team. “Multi-billion-pound decisions depend on adapting to climate change, so we need the most reliable means possible to inform them – and this is it.”
“Weather forecasters could – and should – both warn people of extreme weather and explain how it is being affected by climate change,” Professor Allen continued. “It isn’t a simple case of climate change making all weather worse: some events, like prolonged winter cold, have become less likely.”
The new Oxford studies used the world’s most reliable medium range weather forecasting model, from the European Centre for Medium-Range Weather Forecasting, to assess the impact of climate change on extreme weather. A previous study, published in Environmental Research: Climate, focused on Storm Eunice in the UK, which reached wind speeds of 122 miles per hour and caused 17 deaths in February 2022.
“We found that when climate change expanded how much of the UK was impacted by storm Eunice and intensified the storm’s severity by as much as 26 %,” said Shirin Ermis, who led the UK study by Oxford University Physics. The study published recently applied the same approach to the U.S. Pacific Northwest heatwave, thought to have killed over 800 people in June 2021.
“Climate change and human influence is having a very clear impact on certain extreme weather like storms and heatwaves,” said Dr. Nicholas Leach, who led the U.S. study. “Human influence made this 2021 heatwave at least 8 times more likely, and we also found the risk of similar heatwaves occurring is doubling every 20 years at the current rate of global warming."
Understanding how climate change and human activity impacts extreme weather events remains a significant and urgent challenge because every year such events cost many lives and billions of dollars in aid and disaster relief around the world.
In the UK, the cost of dealing with natural disasters caused by extreme weather and climate change could bankrupt the country by the end of the century, according to a recent report from the environmental intelligence agency Kisters. And in the U.S., the cost of dealing with 28 separate weather and climate disasters in 2023 alone topped a record 90 billion dollars.
To investigate the impact of climate change on extreme weather, and assess the influence of human activity, scientists rely on computer modelling. However, climate models are often inaccurate at a regional or local level and only represent specific atmospheric processes at a coarse scale, making their predictions unreliable, especially for extreme weather like storms.
The Oxford teams overcame this by using high-resolution weather forecasting models to simulate extreme weather as if it had occurred in a world without human influence on climate, and in a warmer world of the future. Their models could simulate and predict even unprecedented weather events and can also be used to understand and quantify how human behavior is changing them.
“Why only use a road atlas when you have a satnav available?” said Dr. Leach. “Our climate models are like the old A-to-Z: tried and tested, but they have their limitations, especially when it comes to extreme weather. Using state-of-the-art weather forecast models allows us to quantify how human influence impacts extreme weather, to zoom in on local impacts, and to investigate the processes driving this, giving us greater confidence in our predictions.”
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.