Researchers have now revealed new compounds that are capable of offering the same benefits as exercise. This discovery could play a potential role in treating patients with muscle atrophy and other medical conditions.
In the future, a pill may offer some of the same benefits as exercise.
(Source: Pixabay)
New Orleans/USA – Doctors have long prescribed exercise to improve and protect health. In the future, a pill may offer some of the same benefits as exercise. Now, researchers report on new compounds that appear capable of mimicking the physical boost of working out — at least within rodent cells. This discovery could lead to a new way to treat muscle atrophy and other medical conditions in people, including heart failure and neurodegenerative disease.
“We cannot replace exercise; exercise is important on all levels,” says Bahaa Elgendy, the project’s principal investigator who is presenting the work at the meeting. “If I can exercise, I should go ahead and get the physical activity. But there are so many cases in which a substitute is needed.”
Exercise benefits both mind and body. In this case, Elgendy, a professor of anesthesiology at Washington University School of Medicine in St. Louis, and his colleagues are hoping to recapitulate its potent physical effects — namely, exercise’s ability to enhance muscle cells’ metabolism and growth, along with improved muscle performance.
A drug that can mimic these effects could offset the muscle atrophy and weakness that can occur as people age or are affected by cancer, certain genetic conditions or other reasons they are unable to carry out regular physical activity. It could also potentially counter the effects of other drugs, such as new weight-loss medications that cause the loss of both fat and muscle, according to Elgendy.
The metabolic changes associated with exercise kick off with the activation of specialized proteins, known as estrogen-related receptors (ERRs), which come in three forms: ERRα, ERRβ and ERRγ. After about a decade of work, Elgendy and his colleagues developed a compound named SLU-PP-332, which activates all three forms, including the most challenging target, ERRα. This type of ERR regulates exercise-induced stress adaptation and other important physiological processes in muscle. In experiments with mice, the team found this compound increased a fatigue-resistant type of muscle fiber while also improving the animals’ endurance when they ran on a rodent treadmill.
To identify SLU-PP-332, the researchers scrutinized the structure of the ERRs and how they bind to molecules that activate them. Then, to improve upon their discovery and develop variations that could be patented, Elgendy and his team designed new molecules to strengthen the interaction with the receptors and thus provoke a stronger response than what SLU-PP-332 can provide. When developing the new compounds, the team also optimized the molecules for other desirable characteristics, such as stability and low potential for toxicity.
The team compared the potency of SLU-PP-332 with that of the new compounds by looking at RNA, a measure of gene expression, from about 15,000 genes in cells from rat heart muscle. The new compounds prompted a greater increase in the presence of the RNA, suggesting they more potently simulate the effects of exercise.
Research using SLU-PP-332 suggests targeting ERRs could be useful against specific diseases. Studies in animals with this preliminary compound indicate that it could have a benefit against obesity, heart failure or a decline in kidney function with age. The results in the updated research suggest the new compounds could have similar effects.
ERR activity also appears to counter damaging processes that occur in the brain in patients diagnosed with Alzheimer’s disease and those who have other neurodegenerative conditions. While SLU-PP-332 cannot pass into the brain, some of the new compounds were developed to do so. “In all of these conditions, ERRs play a major role,” Elgendy says. “If you have a compound that can activate them effectively, you could generate so many beneficial effects.”
Elgendy and his colleagues hope to test the new compounds in animal models through Pelagos Pharmaceuticals, a startup company they have co-founded. They are also looking into the possibility of developing the compounds as potential treatments for neurodegenerative disorders.
The research was supported by the National Institute on Aging of the National Institutes of Health under Award Numbers R21AG065657 and RF1AG077160.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.