German China

Norway: Immunology

Repair-Enzyme Could Be Key to Fight Inflammatory Diseases

| Author / Editor: Christina Benjaminsen/ Sintef / Alexander Stark

Researcher and biochemist Torkild Visnes in his lab at Sintef. He is currently working to establish a similar biomedical research group focusing on drug development at Sintef. Here pictured in front of a biological screening device.
Gallery: 2 Pictures
Researcher and biochemist Torkild Visnes in his lab at Sintef. He is currently working to establish a similar biomedical research group focusing on drug development at Sintef. Here pictured in front of a biological screening device. (Source: Sintef/Thor Nielsen)

Inflammatory diseases such as COPD and septicemia (blood poisoning) represent a growing threat to public health. These conditions are commonly the result of an overactive immune system. An international team of scientists now discovered that an enzyme that normally repairs damaged DNA may be the key to a new treatment for inflammatory diseases.

Trondheim/Norway — The discovery of the drug candidate TH5487 has attracted much attention. The molecule disarms a protein that appears to play a key role in inflammatory diseases, and experiments have shown that it suppresses lung inflammation in mice. The discovery has been made by research scientists at the Karolinska Institute in Stockholm, Stockholm University, the University of Texas, and at NTNU and Sintef in Trondheim, Norway. After a five-year research project, the results were published in the journal Science.

Patients suffering from inflammatory diseases have large amounts of a signal substance in their bodies, known to biochemists as ROS. ROS is an abbreviation for “reactive oxygen species”, which triggers inflammation and damages the genetic material, DNA, in our cells. This damage is repaired by the enzyme OGG1. The research shows that this ‘repair’ also acts as a trigger that promotes overactivity in the immune systems of those patients suffering from autoimmune diseases. “It may sound illogical, but in many diseases it is an overactive immune system that constitutes the problem,” says Torkild Visnes, a Sintef researcher.

Helping the Body to Regenerate Joint Cartilage

USA: Stem Cell Research

Helping the Body to Regenerate Joint Cartilage

11/04/2018 - A study released in Stem Cells moves scientists a step closer to finding how to help the body regenerate joint cartilage ravaged by disease. Their work reveals a new method to quickly and efficiently produce virtually unlimited numbers of chondrocytes, the cells that form cartilage, from human skin cells converted to induced pluripotent stem cells (iPSCs). This could be good news for patients suffering from arthritis. read...

This finding agrees with previous research showing that mice lacking the OGG1 enzyme are unable to activate a powerful immune response. As a result, these mice have milder inflammation than normal mice.

Painstaking Study of 18,000 Substances

The idea of the researchers was to look for a chemical substance that would attach itself to the repair protein OGG1. This substance would then be used to ‘disarm’ the protein by persuading it to respond as if it had already found damaged DNA, and in doing so inhibit its activity. In other words, deprive the protein of its ability to trigger an overactive immune response.

Visnes had previously been working exhaustively to measure activity levels of this class of enzyme using very laborious approaches. But by developing a method that made it possible to determine enzyme activity using fluorescence (repaired DNA can be made to fluoresce), he was able to measure thousands of samples in the space of just a few hours. Visnes said that after examining 18,000 possible substances for properties that might fool the repair enzyme, the research team finally identified a substance that succeeded in deactivating OGG1. The process took a year.

Further Development in the Lab

Then began the laborious process of refining the substance so that it possessed all the properties needed to function in a living cell. Over two years, the research team created roughly a thousand variations on the basic substance and were finally left with the promising drug candidate TH5487, named simply as a result of being made after variant TH5486.

TH5487 proved to have all of the three key properties that the researchers were looking for:

  • It attached itself to the inflammation protein OGG1, inhibiting its activity and preventing it from bonding with DNA.
  • It was able to deactivate OGG1 in living cells.
  • It was very stable when injected into lab animals.
How Gut Bacteria and the Immune System Affect Aging

Switzerland: Bacteriology

How Gut Bacteria and the Immune System Affect Aging

11/15/2018 - Scientists have discovered how a dysfunction in the immune system can cause an overload of a gut bacterium. The bacterium produces excess lactic acid, which in turn triggers the production of reactive oxygen species that cause damage to cells and many age-related pathologies. read...

Healthier Mice in Texas

The breakthrough came when researchers at the University of Texas tested the substance on mice suffering from serious cases of lung inflammation.

TH5487 rapidly and effectively prevented the lung cells from activating inflammation genes. As a result, immune cells did not register the developing infection and thus kept away from the lungs. The condition of the mice improved. The research team thus believes that they have discovered a new approach to suppressing inflammation that can be used instead of, or as a supplement to, existing treatments.

The aim is to develop a drug that can work in people. Visnes says that this will be a long journey because it is expensive and the regulations are complex. But he believes that the scientists now discovered a piece in the puzzle that may have major significance for the treatment of everything from auto-immune diseases to blood poisoning. Visnes now wants to establish a separate biochemistry research group in Trondheim that would focus on DNA and drug development.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45616664 / Laborpraxis Worldwide)