German China

USA: Splitting of CO2

Reaction on Comets Could Help Fight Climate Change

| Editor: Alexander Stark

The reaction represents a new kind of chemistry discovered by studying comets.
Gallery: 2 Pictures
The reaction represents a new kind of chemistry discovered by studying comets. (Source: Pixabay / Pixabay)

When we explore space, we need to bring our own oxygen supply. That is not ideal because a lot of energy is needed to hoist things into space atop a rocket, and once the supply runs out, it is gone. One place molecular oxygen does appear outside of Earth is in the wisps of gas streaming off comets. Caltech scientists claim that the reaction producing this oxygen could not only be used to explore space, but also to fight climate change on Earth.

Pasadena/USA — Two years ago, Konstantinos P. Giapis, a professor of chemical engineering at Caltech, and his postdoctoral fellow Yunxi Yao, proposed the existence of a new chemical process that could account for the source of the oxygen in the trail of comets. Giapis, along with Tom Miller, professor of chemistry, have now demonstrated a new reaction for generating oxygen that Giapis says could help humans explore the universe and perhaps even fight climate change at home. More fundamentally though, he says the reaction represents a new kind of chemistry discovered by studying comets.

Most chemical reactions require energy, which is typically provided as heat. Giapis's research shows that some unusual reactions can occur by providing kinetic energy. When water molecules are shot like extremely tiny bullets onto surfaces containing oxygen, such as sand or rust, the water molecule can rip off that oxygen to produce molecular oxygen. This reaction occurs on comets when water molecules vaporize from the surface and are then accelerated by the solar wind until they crash back into the comet at high speed.

Tiny Microbes Survive Mars-like Environment Conditions

Ethiopia: Nanobacteria

Tiny Microbes Survive Mars-like Environment Conditions

28/05/2019 - The first study of ultra-small bacteria living in the extreme environment of Ethiopia’s Dallol hot springs shows that life can thrive in conditions similar to those thought to have been found on the young planet Mars. This is an exotic, multi-extreme environment, with organisms that need to love high temperature, high salt content and very low pH in order to survive. read...

Splitting CO2 on Gold

Comets, however, also emit carbon dioxide (CO2). Giapis and Yao wanted to test if CO2 could also produce molecular oxygen in collisions with the comet surface. When they found O2 in the stream of gases coming off the comet, they wanted to confirm that the reaction was similar to water's reaction. They designed an experiment to crash CO2 onto the inert surface of gold foil, which cannot be oxidized and should not produce molecular oxygen. Nonetheless, O2 continued to be emitted from the gold surface. This meant that both atoms of oxygen come from the same CO2 molecule, effectively splitting it in an extraordinary manner.

"At the time we thought it would be impossible to combine the two oxygen atoms of a CO2 molecule together because CO2 is a linear molecule, and you would have to bend the molecule severely for it to work," Giapis says. "You're doing something really drastic to the molecule."

To understand the mechanism of how CO2 breaks down to molecular oxygen, Giapis approached Miller and his postdoctoral fellow Philip Shushkov, who designed computer simulations of the entire process. Understanding the reaction posed a significant challenge because of the possible formation of excited molecules. These molecules have so much energy that their constituent atoms vibrate and rotate around to an enormous degree. All that motion makes simulating the reaction in a computer more difficult because the atoms within the molecules move in complex ways.

Where Does the Oxygen on Comet 67P Come From?

UK: Astronomy

Where Does the Oxygen on Comet 67P Come From?

10/07/2018 - When the comet is close enough to the sun the ice on its surface ‘sublimes’ — transforms from solid to gas — forming a gas atmosphere called a coma. Analysis of the coma by instruments on Rosetta revealed that it contained not only water, carbon monoxide and carbon dioxide, as anticipated, but also molecular oxygen. But where did the oxygen come from? read...

"In general, excited molecules can lead to unusual chemistry, so we started with that," Miller says. But, to their surprise, the excited state did not create molecular oxygen. Instead, the molecule decomposed into other products. Ultimately, they found that a severely bent CO2 can also form without exciting the molecule, and that could produce O2.

You Could Throw a Stone at Some CO2 to Split It

The apparatus Giapis designed to perform the reaction works like a particle accelerator, turning the CO2 molecules into ions by giving them a charge and then accelerating them using an electric field, albeit at much lower energies than are found in a particle accelerator. However, he adds that such a device is not necessary for the reaction to occur.

"You could throw a stone with enough velocity at some CO2 and achieve the same thing," he says. However, it would need to be traveling about as fast as a comet or asteroid travels through space.

That could explain the presence of small amounts of oxygen that have been observed high in the Martian atmosphere. There has been speculation that the oxygen is being generated by ultraviolet light from the sun striking CO2, but Giapis believes the oxygen is also generated by high-speed dust particles colliding with CO2 molecules.

He hopes that a variation of his reactor could be used to do the same thing at more useful scales —perhaps one day serving as a source of breathable air for astronauts on Mars or being used to combat climate change by pulling CO2, a greenhouse gas, out of Earth's atmosphere and turning it into oxygen. He acknowledges, however, that both of those applications are a long way off because the current version of the reactor has a low yield, creating only one to two oxygen molecules for every 100 CO2 molecules shot through the accelerator.

"Is it a final device? No. Is it a device that can solve the problem with Mars? No. But it is a device that can do something that is very hard," he says. "We are doing some crazy things with this reactor."

Reference: The paper describing the team's findings, titled "Direct dioxygen evolution in collisions of carbon dioxide with surfaces," appeared in the May 24 issue of Nature Communications.

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45951145 / Laborpraxis Worldwide)