German China

Revolutionary Solution Novel Catalyst System Enables Use of CO2 as Raw Material for Chemical Industry

Source: Press release Evonik 2 min Reading Time

Related Vendors

Researchers from the Leibniz Institute for Catalysis, Ruhr University Bochum and Evonik Oxeno have developed a novel catalyst system that enables the use of the climate gas carbon dioxide as a raw material for the chemical industry.

Researchers from the Leibniz Institute for Catalysis, Ruhr University Bochum and Evonik Oxeno have developed a novel catalyst system that enables the use of the climate gas CO2 as a raw material for the chemical industry. (Source:  Evonik)
Researchers from the Leibniz Institute for Catalysis, Ruhr University Bochum and Evonik Oxeno have developed a novel catalyst system that enables the use of the climate gas CO2 as a raw material for the chemical industry.
(Source: Evonik)

Marl/Germany – Researchers from the Leibniz Institute for Catalysis (Likat), Ruhr University Bochum and Evonik Oxeno have developed a novel catalyst system that enables the use of the climate gas carbon dioxide (CO2) as a raw material for the chemical industry. This breakthrough allows for the more sustainable production of key products such as fragrances and building blocks for plastics.

“Directly using CO2 as a feedstock is a milestone for sustainable chemistry on an industrial scale,” says Prof. Dr. Robert Franke, Project Leader at Evonik Oxeno. “Our collaboration with Likat and Ruhr University Bochum demonstrates how excellent fundamental research combined with industrial expertise can lead to innovative solutions for transforming the chemical industry.”

Stay up to Date

Do you want the latest news, specialist articles and information on new products? Then you can register for our free newsletter:

Choose your Newsletter

Carbonylation is a central process in chemical manufacturing, in which olefins - a group of hydrocarbons - are converted into esters or acids using carbon monoxide. These substances are essential components of many everyday products. The process yields both basic chemicals - such as methyl methacrylate, the precursor for acrylic glass - and specialty chemicals like the fragrance valeric acid methyl ester.

The newly developed bimetallic catalyst system replaces toxic carbon monoxide with climate-friendly carbon dioxide and green hydrogen. In the presence of the transition metals iridium and palladium, along with a proven industrial phosphine ligand, olefins are directly converted into esters. The system shows high selectivity for linear products, which are particularly valued in industrial applications.

“This catalyst system is a great example of how targeted research can contribute to the defossilization of the chemical industry. CO2 is no longer seen as waste, but as a valuable resource,” says Dr. Ralf Jackstell, Head of Research Group at Likat.

This opens up a new perspective: producing industrially relevant chemicals directly from climate gas CO₂ and green hydrogen in a resource-efficient way. The results have been published in the renowned journal Journal of the American Chemical Society.

(ID:50590955)

Subscribe to the newsletter now

Don't Miss out on Our Best Content

By clicking on „Subscribe to Newsletter“ I agree to the processing and use of my data according to the consent form (please expand for details) and accept the Terms of Use. For more information, please see our Privacy Policy. The consent declaration relates, among other things, to the sending of editorial newsletters by email and to data matching for marketing purposes with selected advertising partners (e.g., LinkedIn, Google, Meta)

Unfold for details of your consent