German China

Germany: Water Treatment

New Process Eliminates Pharmaceutical Residues in Waste Water

| Editor: Alexander Stark

Processing module with integrated ultrasonic sensors for complete removal of pharmaceutical residues.
Gallery: 1 image
Processing module with integrated ultrasonic sensors for complete removal of pharmaceutical residues. (Source: Fraunhofer IKTS)

A treatment module developed at Fraunhofer IKTS provides a remedy against pharmaceutical residues in waste water and completely eliminates these harmful substances. Apart from water treatment, possible applications of this new technology also include chemical synthesis.

Dresden/Germany — Pharmaceutical residues in waste water pose new challenges for municipal water treatment. Established methods are frequently found lacking when it comes to removing such substances.

In Germany, approximately 38,000 tons of medicines, including hormones, antibiotics and antivirals, are consumed annually. Their residues are increasingly found in the waste water of conurbations. From there they also enter ground- and surface water. Usually, they are difficult to remove with conventional sewage plant and water treatment technology. Two very worrying trends are associated with this: the increasing of both the spread of multiresistant microorganisms and fertility disorders.

With the help of electrochemical processes, pharmaceutical residues can be completely degraded. They are electrochemically converted at the anode of an electrolysis cell, leaving only carbon dioxide. However, the anodes made of boron-doped diamond with a price of currently approx. $ 19,000 per square meter are much too expensive. Fraunhofer IKTS is pursuing two approaches in order to manufacture the electrodes more cost-efficiently and increase the degradation rates.

Cost-Efficient Anode Materials

On the one hand, an alternative noble-metal-free anode material of semiconducting mixed-oxide phases was developed. Tin-antimony oxide-based systems have proven to be particularly effective. With the same functionality and service life, they cost only one tenth compared to boron-doped diamond.

On the other hand, researchers at the Dresden institute cause the waste water to oscillate by means of ultrasound in order to intensify the mass transport at the electrode and thus reach even higher degradation rates. This is achieved by minimizing the thickness of the diffusion layer on the anode. The layer acts as a kind of reaction barrier and thus slows down their destruction.

Ultrasound Technology Does the Trick

The new approach consists of pressing the ultrasonic sensors directly onto the ceramic electrode so that it vibrates like a spring. This greatly improves material transport to the electrode. This is made possible by ceramic materials and technologies. The institute covers the entire technological chain — from the development of functional materials, screen printing of ultrasonic actuators, suitable joining technologies for contacting the electrode to systems integration. In addition, there is extensive know-how in the field of electrochemical process engineering, which forms the basis for the successful treatment of polluted waste water.

Long-Term Protection of Drinking Water Against Microorganisms

Lithuania: Water Treatment

Long-Term Protection of Drinking Water Against Microorganisms

03/06/2018 - Researchers at KTU are developing drinking water disinfection technology, which not only destroys microorganisms, but also provides long-term protection against wide range of them. read...

Possible Application in Chemical Synthesis

On a laboratory scale, a convincing proof of the function of the new electrode-sonotrode module has recently been provided and a patent application has been filed. In view of the positive results, Dipl.-Chem. Hans-Jürgen Friedrich, head of Technical Electrolysis and Geothermal Energy group at Fraunhofer IKTS in Dresden, now sees upscaling as a realistic goal. An electrochemical reactor is being developed and tested on a technical scale for this purpose. In the future, the electrode-sonotrode module coild also be used in other sectors, such as the destruction of nitroaromatics, plasticizers, herbicide residues or other toxic substances in commercial waste water. According to Friedrich, applications in the field of chemical synthesis and sensor technology are also focused.

At this year‘s Ifat, Fraunhofer IKTS presents its entire portfolio of efficient and environmentally friendly water treatment technologies on Booth 132 in Hall A3.

Comments are being loaded ....

Leave a comment
  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45302028 / Laborpraxis Worldwide)