Scientists have found that ‘mechanoresilient’ cancer cells which are resilient to mechanical stress multiply rapidly, have the potential to form secondary tumors and are also drug resistant.
Prof Lim Chwee Teck showing an image of a ‘mechano-resilient’ cancer cell undergoing extensive deformation as the cell is squeezed through a narrow channel.
(Source: National University of Singapore)
Queenstown/Singapore – The ability of cancer cells to metastasise, or spread from one part of the body to another, is one of the reasons why cancer can be extremely challenging to treat. However, the process that drives metastasis is complex and not fully understood. In a recent study, scientists from the National University of Singapore (NUS) pulled back the curtains on the complex interactions between tumor cells and the microenvironment, and showed that some cancer cells are resilient to mechanical stress and such cells also have a stronger ability to multiply rapidly to form secondary tumors.
“Understanding how some cancer cells can survive mechanically-induced cell death is key to preventing the spread of malignant tumors, and paves the way for more targeted therapies,” explained lead author of the research Professor Lim Chwee Teck, who is Director of the NUS Institute for Health Innovation and Technology and holds an appointment at the Department of Biomedical Engineering under the NUS College of Design and Engineering.
Prof Lim and his team reported these groundbreaking findings, a culmination of four years of research work, in the scientific journal Advanced Science on 23 May 2023.
The body’s innate immunity against cancer
Our body possesses a unique defense mechanism – known as immune surveillance – that targets circulating cancer cells in the bloodstream. This mechanism plays a crucial role in detecting and eliminating cancer cells.
The physical microenvironment in the form of tiny blood vessels, called capillaries, with diameters much smaller than that of circulating cancer cells, also plays a role in ‘filtering’ out these cancer cells. Such narrow capillaries create physical barriers that restrict the passage of larger cancer cells. Cancer cells that cannot deform or squeeze through these tight spaces may become trapped or damaged, preventing their further dissemination.
Identifying cancer cells that are resilient to mechanical stress
How do certain circulating cancer cells avoid being ruptured by the shear forces within the body’s dense system of small capillaries? To investigate this, the scientists designed a new experimental method to ‘force’ different cancer cell lines through a series of small, capillary-sized constrictions. The majority of the cancer cells were ruptured and killed in the process. But the researchers also observed that a small population of each cancer cell line emerged relatively unscathed.
They further analysed these surviving cancer cells and discovered that they carried a distinct molecular signature compared with the original set of cancer cells. Intriguingly, the scientists discovered that the ability of these cells to survive and proliferate was linked to specific properties of their nuclear membrane proteins, nuclear stiffness, and their self-repair capabilities.
Cancer cells that survived mechanical stress are more metastatic
The scientists characterized the surviving cancer cells as ‘mechanoresilient’. They found out that in these cells, the DNA damage repair machinery, which is critical for cellular survival, was enhanced and more active than usual. These cells also exhibited greater malignancy – they could multiply more rapidly compared to the original cells and were also less susceptible to chemotherapy drugs.
Through a meta-analysis of different cancer types using data from cancer genome database, the scientists showed that the altered gene expression profiles in these cancer cells were linked to poorer disease prognosis and patient outcomes.
The research team also uncovered an unexpected link between the cancer cells’ exposure to mechanical stress, and the onset of metastatic development. Although previous studies have shown that metastasising cancer cells are more invasive and resistant to cancer therapies compared to localized cancer cells in primary tumors, it was not previously clear if mechanical stress played a direct role in this transformation.
In this study, NUS scientists put the cancer cells through multiple rounds of mechanical stress and concluded, for the first time, that mechanical stress could potentially contribute to the surviving cancer cells gaining proliferation ability and drug resistance.
Paving the way for more targeted cancer therapies
Understanding the molecular traits of mechanoresilient cancer cells thus open up a new avenue for cancer treatment. Therapeutic approaches could potentially be developed to target specific nuclear membrane proteins and inhibiting the self-repair ability of the cancer cells to achieve positive treatment outcomes.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Additionally, identifying the biomarkers associated with mechanoresilience in cancer cells can be used to diagnose or even predict patient response to therapy.
Further research may also contribute towards the development of a novel diagnostic method for cancer. For example, a detailed imaging of the cancer cell nucleus could reveal the presence of mechanoresilient cells, to help doctors in selecting a suitable treatment option that prevents the onset of metastasis.