Newly identified compounds appear effective against drug-resistant bacteria. The technique used to reveal them could uncover many more antibiotics, as well as help illuminate a previously hidden microbial world.
To find bioactive molecules with the potential to become new drugs less prone to antibiotic resistance, the researchers sequenced bacterial DNA extracted from soils from Rockefeller's field center in upstate New York.
(Source: The Rockefeller University)
Most bacteria cannot be cultured in the lab — and that’s been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil beneath our feet has a vast hidden reservoir of untapped lifesaving compounds.
Now, researchers have developed a way to access this microbial goldmine. Their approach, published in Nature Biotechnology, circumvents the need to grow bacteria in the lab by extracting very large DNA fragments directly from soil to piece together the genomes of previously hidden microbes, and then mines resulting genomes for bioactive molecules.
From a single forest sample, the team generated hundreds of complete bacterial genomes never seen before, as well as two new antibiotic leads. The findings offer a scalable way to scour unculturable bacteria for new drug leads — and expose the vast, uncharted microbial frontier that shapes our environment.
We finally have the technology to see the microbial world that have been previously inaccessible to humans. And we're not just seeing this information; we're already turning it into potentially useful antibiotics. This is just the tip of the spear.
Sean F. Brady, Head of the Laboratory of Genetically Encoded Small Molecules at Rockefeller
Microbial Dark Matter
When hunting for bacteria, soil is an obvious choice. It's the largest, most biodiverse reservoir of bacteria on the planet — a single teaspoon of it may contain thousands of different species. Many important therapeutics, including most of our antibiotic arsenal, were discovered in the tiny fraction of soil bacteria that can be grown in the laboratory. And soil is dirt cheap.
Yet we know very little about the millions of microbes packed into the earth. Scientists suspect that these hidden bacteria hold not only an untapped reservoir of new therapeutics, but clues as to how microbes shape climate, agriculture, and the larger environment that we live in. “All over the world there's this hidden ecosystem of microbes that could have dramatic effects on our lives,” Brady adds. “We wanted to finally see them.”
Getting that glimpse involved weaving together several approaches. First, the team optimized a method for isolating large, high-quality DNA fragments directly from soil. Pairing this advance with emerging long-read nanopore sequencing allowed Jan Burian, a postdoctoral associate in the Brady lab, to produce continuous stretches of DNA that were tens of thousands of base pairs long — 200 times longer than any previously existing technology could manage. Soil DNA contains a huge number of different bacteria; without such large DNA sequences to work with, resolving that complex genetic puzzle into complete and contiguous genomes for disparate bacteria proved exceedingly difficult.
“It's easier to assemble a whole genome out of bigger pieces of DNA, rather than the millions of tiny snippets that were available before,” Brady says. “And that makes a dramatic difference in your confidence in your results.”
Unique small molecules, like antibiotics, that bacteria produce are called “natural products”. To convert the newly uncovered sequences into bioactive molecules, the team applied a synthetic bioinformatic natural products (synBNP) approach. They bioinformatically predicted the chemical structures of natural products directly from the genome data and then chemically synthesized them in the lab. With the synBNP approach, Brady and colleagues managed to turn the genetic blueprints from uncultured bacteria into actual molecules — including two potent antibiotics.
Brady describes the method, which is scalable and can be adapted to virtually any metagenomic space beyond soil, as a three-step strategy that could kick off a new era of microbiology: "Isolate big DNA, sequence it, and computationally convert it into something useful."
Two New Drug Candidates, and Counting
Applied to their single forest soil sample, the team's approach produced 2.5 terabase-pairs of sequence data — the deepest long-read exploration of a single soil sample to date. Their analysis uncovered hundreds of complete contiguous bacterial genomes, more than 99 percent of which were entirely new to science and identified members from 16 major branches of the bacterial family tree.
The two lead compounds discovered could translate into potent antibiotics. One, called erutacidin, disrupts bacterial membranes through an uncommon interaction with the lipid cardiolipin and is effective against even the most challenging drug-resistant bacteria. The other, trigintamicin, acts on a protein-unfolding motor known as ClpX, a rare antibacterial target.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Brady emphasizes that these discoveries are only the beginning. The study demonstrates that previously inaccessible microbial genomes can now be decoded and mined for bioactive molecules at scale without culturing the organisms. Unlocking the genetic potential of microbial dark matter may also provide new insights into the hidden microbial networks that sustain ecosystems.
“We're mainly interested in small molecules as therapeutics, but there are applications beyond medicine,” Burian says. “Studying culturable bacteria led to advances that helped shape the modern world and finally seeing and accessing the uncultured majority will drive a new generation of discovery.”
Original Article: Bioactive molecules unearthed by terabase-scale long-read sequencing of a soil metagenome; Nature Biotechnology; DOI:10.1038/s41587-025-02810-w