German China

Sweden: Nanophotonics

Light and Matter Become One in a Tiny Light Box

| Editor: Alexander Stark

Using a box of stacked atomically thin layers of tungsten disulphide, Chalmers researchers have succeeded in creating a type of feedback loop in which light and matter become one.
Gallery: 1 image
Using a box of stacked atomically thin layers of tungsten disulphide, Chalmers researchers have succeeded in creating a type of feedback loop in which light and matter become one. (Source: Denis Baranov/ Yen Strandqvist/ Chalmers University of Technology)

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. The discovery opens up new possibilities in the world of nanophotonics.

Gothenburg/Sweden — Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and solar cells. When the photonic components are so small that they are measured in nanometres, this is called nanophotonics. In order to push the boundaries of what is possible in this tiny format, progress in fundamental research is crucial.

The innovative ‘light box’ of the Chalmers researchers makes the alternations between light and matter take place so rapidly that it is no longer possible to distinguish between the two states. Light and matter become one. The scientists have created a hybrid consisting of equal parts of light and matter. The concept opens completely new doors in both fundamental research and applied nanophotonics and according to Ruggero Verre there is a great deal of scientific interest in this. Verre is a researcher in the Department of Physics at Chalmers and one of the authors of the scientific article.

Physicists Succeed in Determining the Geometry of an Electron

Switzerland: Quantum Electronics

Physicists Succeed in Determining the Geometry of an Electron

25/05/2019 - Scientists at the University of Basel were able to show for the first time how a single electron looks in an artificial atom. A newly developed method enabled them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. read...

Stacked Atoms as Optical Resonators

The discovery came about when Verre and his departmental colleagues Timur Shegai, Denis Baranov, Battulga Munkhbat and Mikael Käll combined two different concepts in an innovative way. Mikael Käll’s research team is working on what are known as nanoantennas, which can capture and amplify light in the most efficient way. Timur Shegai’s team is conducting research into a certain type of atomically thin two-dimensional material known as TMDC material, which resembles graphene. It was by combining the antenna concept with stacked two-dimensional material that the new possibilities were created.

The researchers used a well-known TMDC material — tungsten disulphide — but in a new way. By creating a tiny resonance box — much like the sound box on a guitar — they were able to make the light and matter interact inside it. The resonance box ensures that the light is captured and bounces round in a certain ‘tone’ inside the material, thus ensuring that the light energy can be efficiently transferred to the electrons of the TMDC material and back again. It could be said that the light energy oscillates between the two states — light waves and matter — while it is captured and amplified inside the box. The researchers have succeeded in combining light and matter extremely efficiently in a single particle with a diameter of only 100 nanometres, or 0.00001 cm.

This all-in-one solution is an unexpected advance in fundamental research, but might also contribute to more compact and cost-effective solutions in applied photonics.

Read the scientific article Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators in Nature Nanotechnology

Comments are being loaded ....

Leave a comment

The comment is checked by an editor and will be released soon.

  1. Avatar
    Avatar
    Edited by at
    Edited by at
    1. Avatar
      Avatar
      Edited by at
      Edited by at

Comments are being loaded ....

Report comment

Kommentar Freigeben

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

Freigabe entfernen

Der untenstehende Text wird an den Kommentator gesendet, falls dieser eine Email-hinterlegt hat.

copyright

This article is protected by copyright. You want to use it for your own purpose? Infos can be found under www.mycontentfactory.de (ID: 45970079 / Laborpraxis Worldwide)