From Fighters to RegulatorsImmune Cells Found to Regulate Blood Sugar During Fasting and Exercise
Source:
Champalimaud Centre for the Unknown
5 min Reading Time
A recent study reveals how immune cells act as “postmen” in a complex conversation between the nervous, immune, and hormonal systems, regulating blood sugar during energy shortages. This discovery opens new pathways for managing diabetes, obesity, and cancer.
During fasting or exercise, immune cells (red) migrate to the pancreas and stimulate glucagon-producing cells (orange) to regulate blood sugar, with cell nuclei shown in blue.
When we think about the immune system, we usually associate it with fighting infections. However, a study published in Science by the Champalimaud Foundation reveals a surprising new role. During periods of low energy — such as intermittent fasting or exercise — immune cells step in to regulate blood sugar levels, acting as the “postman” in a previously unknown three-way conversation between the nervous, immune and hormonal systems. These findings open up new approaches for managing conditions like diabetes, obesity, and cancer.
“For decades, immunology has been dominated by a focus on immunity and infection”, says Henrique Veiga-Fernandes, head of the Immunophysiology Lab at the Champalimaud Foundation. “But we’re starting to realise the immune system does a lot more than that”.
Glucose, a simple sugar, is the primary fuel for our brains and muscles. Maintaining stable blood sugar levels is crucial for our survival, especially during fasting or prolonged physical activity when energy demands are high and food intake is low.
Traditionally, blood sugar regulation has been attributed to the hormones insulin and glucagon, both produced by the pancreas. Insulin lowers blood glucose by promoting its uptake into cells, while glucagon raises it by signalling the liver to release glucose from stored sources.
Veiga-Fernandes and his team suspected there was more to the story. “For example”, he notes, “some immune cells regulate how the body absorbs fat from food, and we’ve recently shown that brain-immune interactions help control fat metabolism and obesity. This got us thinking — could the nervous and immune systems collaborate to regulate other key processes, like blood sugar levels?”.
A New Circuit Uncovered
To explore this idea, the researchers conducted experiments in mice. They used genetically engineered mice lacking specific immune cells to observe their effects on blood sugar levels.
They discovered that mice missing a type of immune cell called ILC2 couldn’t produce enough glucagon — the hormone that raises blood sugar — and their glucose levels dropped too low. “When we transplanted ILC2s into these deficient mice, their blood sugar returned to normal, confirming the role of these immune cells in stabilising glucose when energy is scarce”, explains Veiga-Fernandes.
Realising that the immune system could affect a hormone as vital as glucagon, the team knew they were onto something of major impact. But it left them asking: how exactly does this process work? The answer took them in a very unexpected direction.
“We thought this was all being regulated in the liver because that’s where glucagon exerts its function”, recalls Veiga-Fernandes. “But our data kept telling us that everything of importance was happening between the intestine and the pancreas”.
Using advanced cell-tagging methods, the team labelled ILC2 cells in the gut, giving them a glow-in-the-dark marker. After fasting, they found these cells had travelled to the pancreas. “One of the biggest surprises was finding that the immune system stimulates the production of the hormone glucagon by sending immune cells on a journey across different organs”.
Once in the pancreas, those immune cells release cytokines — tiny chemical messengers — that instruct pancreatic cells to produce the hormone glucagon. The increase in glucagon then signals the liver to release glucose. “When we blocked these cytokines, glucagon levels dropped, proving they are essential for maintaining blood sugar levels”.
“What’s remarkable here is that we’re seeing mass migration of immune cells between the intestine and pancreas, even in the absence of infection,” he adds. “This shows that immune cells aren’t just battle-hardened soldiers fighting off threats — they also act like emergency responders, stepping in to deliver critical energy supplies and maintain stability in times of need”.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
It turns out this migration is orchestrated by the nervous system. During fasting, neurons in the gut connected to the brain release chemical signals that bind to immune cells, telling them to leave the intestine and go to a new “postcode” in the pancreas, within a few hours. The study showed that these nerve signals change the activity of immune cells, suppressing genes that anchor them in the intestine and enabling them to move to where they’re needed.
Implications for Fasting and Exercise
“This is the first evidence of a complex neuroimmune-hormonal circuit”, Veiga-Fernandes observes. “It shows how the nervous, immune, and hormonal systems work together to enable one of the body’s most essential processes — producing glucose when energy is scarce”.
“Mice share many fundamental biological systems with humans, suggesting this inter-organ dialogue also occurs in humans when fasting or exercising. By understanding the role of ILC2s and their regulation by the nervous system, we can better appreciate how these daily life activities support metabolic health. We’re eavesdropping on conversations between organs that we’ve never heard before”.
He adds that the immune system likely evolved as a safeguard during adversity, pointing out that our ancestors didn’t have the luxury of three meals a day and, if they were lucky, might have managed just one. This evolutionary pressure would have pressured our bodies to find ways to ensure that every cell gets the energy it needs.
“We’ve long known that the brain can directly signal the pancreas to release hormones quickly, but our work shows it can also indirectly boost glucagon production via immune cells, making the body better equipped to handle fasting and intense physical activity efficiently”.
Cancer, Diabetes and Beyond
The findings could open new doors for managing a range of conditions, notably for cancer research. Pancreatic neuroendocrine tumours and liver cancer can hijack the body’s metabolic processes, using glucagon to increase glucose production and fuel their growth. In advanced liver cancer, this process can lead to cancer-related cachexia, a condition marked by severe weight and muscle loss. Understanding these mechanisms could help develop better treatments.
“Balancing blood sugar is also critical, not only for preventing obesity, but also for addressing the global diabetes epidemic, which affects hundreds of millions of people”, remarks Veiga-Fernandes. “Targeting these neuro-immune pathways could offer a new approach to prevention and treatment”.
“This study reveals a level of communication between body systems that we’re only beginning to grasp”, he concludes. “We want to understand how this inter-organ communication works — or doesn’t — in people with cancer, chronic inflammation, high stress, or obesity. Ultimately, we aim to harness these results to improve therapies for hormonal and metabolic disorders”.
Original Article: Neuronal-ILC2 interactions regulate pancreatic glucagon and glucose homeostasis; Science; DOI:10.1126/science.adi3624