Sweden: Biofuels How Cyanobacteria Use Solar Energy to Produce Biofuel
Editor: Alexander Stark
The world is looking for methods to replace fossil fuels with a carbon-neutral product created from solar energy, carbon dioxide and water. Researchers at Uppsala University have now successfully produced microorganisms that can efficiently produce butanol using carbon dioxide and solar energy, without requiring to use solar cells.
Uppsala/Sweden — The knowledge and ability to modify cyanobacteria to produce a variety of chemicals from carbon dioxide and solar energy is emerging in parallel with advances in technology, synthetic biology, genetically changing them. Scientists at the University of Uppsala have designed and created a series of modified cyanobacteria that gradually produced increasing quantities of butanol in direct processes. Through a combination of technical development, systematic methods and the discovery that as more product removed from the cyanobacteria, the more butanol is formed, their study shows the way towards realizing this concept.
It is already known that it is possible to produce butanol using cyanobacteria. The researchers have now been able to show that it is possible to achieve significantly higher production volumes. They claim it is high enough to use their process in production. In practical terms, butanol can be used in the automotive industry as both a vehicle fuel — fourth generation biofuel — and as an environmentally friendly component of rubber for tyres. In both cases, fossil fuels are replaced by a carbon-neutral product created from solar energy, carbon dioxide and water.
Even larger industries that currently produce high amounts of greenhouse gas emissions from carbon dioxide are to be able to use the process with cyanobacteria to bind carbon dioxide and consequently significantly reduce their emissions.
Microscopic cyanobacteria are the most efficient photosynthetic organisms on earth. In this study, the scientists utilize their ability to efficiently capture the sun’s energy and bind to carbon dioxide in the air, alongside with all the tools available to modify cyanobacteria to produce desirable products. The results show that a direct production of carbon-neutral chemicals and fuels from solar energy will be a possibility in the future, explains Peter Lindblad, Professor at the Department of Chemistry Ångström Laboratory at Uppsala University who is leading the project.
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planckstr. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://support.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.