German China
Search

Nanospectroscopy High-Resolution Nanonscale Mapping

| Editor: Alexander Stark

Scientists from the Basque institutions CIC nanoGune, Ikerbasque and Cidetec, and the German Robert Koch-Institut have developed hyperspectral infrared nanoimaging.

Related Company

Researchers from CIC nanoGUNE (San Sebastian, Spain), Ikerbasque (Bilbao, Spain), Cidetec (San Sebastian, Spain) and the Robert Koch-Institut (Berlin, Germany) developed hyperspectral infrared nanoimaging.
Researchers from CIC nanoGUNE (San Sebastian, Spain), Ikerbasque (Bilbao, Spain), Cidetec (San Sebastian, Spain) and the Robert Koch-Institut (Berlin, Germany) developed hyperspectral infrared nanoimaging.
(Source: CIC NanoGune)

San Sebastian/Spain — The technique allows for recording two-dimensional arrays of several thousand of nano-FTIR spectra — referred to as hyperspectral data cubes — in a few hours and with a spatial resolution and precision of more than 30 nm.

“The excellent data quality allows for extracting nanoscale-resolved chemical and structural information with the help of statistical techniques (multivariate data analysis) that use the complete spectroscopic information available at each pixel”, says Iban Amenabar, first author of the work.

Even without any previous information about the sample and its components, pixels with similar infrared spectra can be grouped automatically with the help of hierarchical cluster analysis. By imaging and analysis of a three-component polymer blend and (Figure 2), the researchers obtained nanoscale chemical maps that do not only reveal the spatial distribution of the individual components but also spectral anomalies that were explained by local chemical interaction. The researcher also demonstrated in situ hyperspectral infrared nanoimaging of native melanin in human hair.

For their experiments, the researchers used the commercial nano-FTIR system from Neaspec including a mid-infrared laser continuum that covers the spectral range from 1,000 to 1,900 cm-1. Multivariate analysis of the hyperspectral data was done with the software tool Cytospec, which was developed by coauthor Peter Lasch.

Broad Area of Applications

“With the rapid development of high-performance mid-infrared lasers and by applying advanced noise reduction strategies, we envision high-quality hyperspectral infrared nanoimaging in few minutes”, concludes Rainer Hillenbrand who led the work. “We see a large application potential in various fields of science and technology, including the chemical mapping of polymer composites, pharmaceutical products, organic and inorganic nanocomposite materials or biomedical tissue imaging ”, he adds.

Nano-FTIR Spectroscopy

Nanoscale chemical analysis has recently become possible with nano-FTIR spectroscopy, an optical technique that combines scattering-type scanning near-field optical microscopy (s-SNOM) and Fourier transform infrared (FTIR) spectroscopy. By illuminating the metalized tip of an atomic force microscope (AFM) with a broadband infrared laser or a synchrotron, and analyzing the backscattered light with a specially designed Fourier Transform spectrometer, local infrared spectroscopy with a spatial resolution of less than 20 nm has been demonstrated. However, only point spectra or spectroscopic line scans comprising not more than a few tens of nano-FTIR spectra could be achieved on organic samples, owing to the long acquisition times.

(ID:44547256)