German China
Search

USA: Crispr Method Gene Editing of Mosquitoes Could Make Humans Unattractive Targets

| Editor: Alexander Stark

Just like fresh-baked cookies or sizzling bacon is to us, the scent of your sweat is a mouthwatering aroma to mosquitoes. Now, scientists have discovered how these undesirable insects zero in on our delectable odor. The finding creates a roadmap for repellent design and mosquito population control.

It’s the odor from lactic acid and other acidic volatiles in human sweat that some mosquitoes are attracted to when seeking a blood meal.
It’s the odor from lactic acid and other acidic volatiles in human sweat that some mosquitoes are attracted to when seeking a blood meal.
(Source: gemeinfrei / CC0 )

Miami/USA — It’s actually the odor from lactic acid and other acidic volatiles found in human sweat that some mosquitoes are attracted to when seeking a blood meal. A team of researchers from FIU’s Laboratory of Tropical Genetics has used Crispr to identify a unique olfactory receptor used to detect these odors in Aedes aegypti mosquitoes, which are known to transmit dangerous and sometimes deadly diseases including yellow fever, dengue and Zika. The guilty receptor is known to scientists as Ionotropic Receptor 8a, or simply IR8a.

FIU biologist Matthew DeGennaro, who leads the lab where the discovery was made, already made genetics history in 2013 when he created the first-ever mutant mosquito as a post-doctoral researcher in Leslie Vosshall’s laboratory at The Rockefeller University. He was able to remove a gene and investigate how the absence of that gene changed the mosquito’s behavior.

Gallery

Since that time, he has worked with countless mutants in a process of elimination until he and his team landed on IR8a. DeGennaro had a hunch and tasked his Ph.D. student Joshua Raji with investigating the receptor. The scientists mutated the receptor in mosquitoes and, in several experiments, found IR8a mutants struggled to pick up the desired aroma of lactic acid and could not detect other acidic components of human odor. They were still able to detect CO2 and heat, which people emit, but their inability to smell a person’s acidic volatiles left more than half uninspired to feed.

The FIU team’s discovery could give rise to a new generation of attractants to lure adult mosquitoes to traps for population control. It also offers researchers a roadmap for making people invisible to mosquitoes. Blocking the IR8a pathway could be an important strategy for repellent design. DeGennaro explained that removing the function of this receptor removes approximately 50 % of the host-seeking activity. Odors that mask the IR8a pathway could be found to enhance the effectiveness of current repellents like DEET or picaridin.

The research, which was published today in Current Biology, was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health and by the Centers for Disease Control and Prevention’s Southeastern Center of Excellence in Vector Borne Diseases.

(ID:45842371)