Physicists have come up with a novel method of repurposing fish scale waste to effectively remove the pollutant Rhodamine B from water, and a material for information encryption. This method has the potential to reduce environmental impact and generate economic benefits.
Prof Sow Chorng Haur (left) and Dr. Sharon Lim (right) from the NUS Department of Physics were part of the research team that discovered how heat-treated fish scales can be upcycled for pollution control and encryption.
(Source: NUS)
Queenstown/Singapore – Fish is commonly consumed but many may not be aware that the food and aquaculture sectors generate a huge amount of fish scale waste from processes such as preparation, canning, filleting, salting and smoking. Disposal of fish scale waste in landfills may cause serious environmental pollution problems. Therefore, converting fish scale waste into functional materials could help to reduce environmental impact and generate economic benefits.
Contributing to this effort, physicists from the National University of Singapore (NUS) have developed a novel method of repurposing fish scale waste to act as a bio-adsorbant to effectively remove the pollutant Rhodamine B from water, and a material for information encryption.
A research team, led by Professor Sow Chorng Haur from the NUS Department of Physics, discovered that heating fish scales at an optimal temperature transformed them to become suitable adsorbents for water pollutant Rhodamine B, a common pink dye used in textiles, paper, paints and water flow tracing agents. Rhodamine B is associated with potential health risks such as cancer and liver failure, and threats to marine ecosystems.
The scientists also found that the heat-treated fish scales emitted a vibrant cyan glow, compared to a dim royal blue fluorescence when they were untreated, under ultraviolet (UV) light. This characteristic can be harnessed to utilize fish scales as a natural material capable of transmitting micro and macroscopic text and imagery.
“As the global population grows and resources become more limited, sustainability involves greater emphasis on reusing waste materials. Globally, an estimated 7.2-12 million tons of fish waste is projected to be discarded yearly. This makes fish scale waste an abundant resource for upcycling. By re-evaluating waste streams, fascinating properties and multifunctionalities can be discovered in materials that may have been overlooked previously,” said Prof Sow.
The research team also comprised Dr. Sharon Lim Xiaodai from the NUS Department of Physics, Dr. Zhang Zheng from the Agency of Science, Technology and Research, and Malcolm Sow Miao Geng from the NUS High School of Math and Science. The findings were published in the journal Nature Communications on 16 October 2023.
Giving new life to fish scale waste
Fish scales primarily consist of interlacing collagen, a protein known for maintaining a youthful appearance, and hydroxyapatite, a mineral found in bones and teeth. Due to the good biocompatibility of these two compounds, different methods have been used to extract them for further development into fluorescence labels which help detect biomolecules in research. However, these processes often require significant amounts of time, energy, and chemical resources. Enhancing the fluorescence of fish scales through a more direct and efficient method would improve cost-effectiveness.
With the researchers’ facile heating method, the fish scales undergo both chemical and physical changes. Long chains of collagen are broken down into smaller segments that emit blue light under UV excitation. Simultaneously, atom arrangement is altered which creates surface and internal pores that transform fluorescence properties and enhance pollutant adsorption.
When in contact with Rhodamine B, the heat-treated fish scales effectively removed 91 per cent of the pollutant within a short 10-minute contact time. Fish scales contaminated with Rhodamine B can be reused through a simple sonication process, enhancing the sustainability of the material. With just a single thermal annealing step required, this innovative technique is more cost, energy and time efficient than using other inexpensive biomass such as activated carbon white sugar which needs to go through multiple steps of chemical treatment, washing and thermal annealing in order to remove Rhodamine B.
The fluorescent properties of the heat-treated fish scales under different types of light can also be harnessed for steganographic purposes. Scales can be heated in bulk on a hotplate and arranged to convey a message, or laser-engraved with text and images on a microscopic scale. These hidden messages can be revealed under UV light. Heat-treated fish scales which have adsorbed Rhodamine B also glow orange under green light excitation, compared to the same heat-treated fish scales without Rhodamine B that display a very dim blue fluorescence under the same light. This presents another option for steganographic pattern design.
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Next steps
Looking ahead, the research team will look into developing economical and readily accessible Rhodamine B test kits for use in outfield detection using heat-treated fish scales. The approach will help minimize the risk of Rhodamine B consumption and exposure by communities relying on natural water bodies, and outfield scientists transporting contaminated water sources.
Further research is also planned to explore whether the heat-treated fish scales can adsorb other toxic chemicals.