Researchers have discovered that combining visible light with electrochemistry can significantly boost the conversion of carbon dioxide into valuable products. In a surprising twist, they found that light not only speeds up the reaction but also improves chemical selectivity, paving the way for more efficient CO2 reduction and other catalytic processes.
A new study from the University of Illinois captures energy from the visible light spectrum to power up carbon dioxide recycling.
(Source: National Science Foundation)
By combining visible light and electrochemistry, researchers have enhanced the conversion of carbon dioxide into valuable products and stumbled upon a surprising discovery. The team found that visible light significantly improved an important chemical attribute called selectivity, opening new avenues not only for CO2 conversion but also for many other chemical reactions used in catalysis research and chemical manufacturing.
One way that chemists recycle CO2 into valuable products is through a process called electrochemical reduction, where a stream of CO2 gas moves through an electrolysis cell that breaks the CO2 and water down into carbon monoxide and hydrogen, which then can be used to make new desired hydrocarbon products, said University of Illinois Urbana-Champaign chemistry professor Prashant Jain. “However, the reaction is sluggish, and the process requires large electrodes containing a lot of expensive catalyst material such as gold or copper, so our lab has been pursuing ways to speed up the process so that less catalyst material is required, making it a more viable option for the alternative fuels industry.”
The new study, led by Jain and former graduate student Francis Alcorn and published in the Proceedings of the National Academy of Sciences, details a method that combines the action of visible light with electrodes coated in nanoparticles of gold-copper alloy to induce CO2 reduction at a much higher rate and allow for more controlled selectivity than seen with current methods.
“These new electrodes act like tiny antennae that seek out photons in the visible light range and couple them with the chemical reaction pathway,” Jain said.
In the lab, the electrodes are immersed in a solution of CO2, water and an electrolyte to enhance conductivity. The team then applies a voltage across the electrode while a visible light laser illuminates its surface. The resulting reaction rapidly produces carbon monoxide — from splitting the CO2 — and hydrogen, which comes from splitting water molecules.
By using light, we enhance the activity of this catalyst, but surprisingly, we also change the selectivity.
Prashant Jain; Chemistry Professor; University of Illinois Urbana-Champaign
“We were very excited to see the boost in productivity when visible light was used. However, we were not expecting to find that using visible light would have a major impact on chemical selectivity, which is the important advance here,” Jain said.
In catalysis, chemical selectivity is the ability of a chemical reaction to favor or target one type of pathway or molecule over another. In this study, the researchers found that the water-splitting reaction that forms hydrogen gas was selectively enhanced by using light. This led the team to experiment further and model their results with the help of Northwestern University chemistry professor George Schatz and postdoctoral researcher Sajal Kumar Giri.
“The results revealed that visible light offers a unique opportunity to adjust the ratio of carbon monoxide to hydrogen gas produced, a crucial factor for the industrial production of synthetic gas,” Jain said. “This finding paves the way for a more sustainable and efficient energy future.”
Using light to help boost chemical reactions is not without its controversy, though, Jain said. Because adding light to a chemical reaction will also add heat, it was essential for the team to run careful measurements and control experiments to determine if it was simply the heating effect of light that led to faster reaction rates and selectivity.
“We ran experiments with and without the laser at the exact same temperature produced by light excitation and ruled out heating as being responsible,” Jain said. “Rather, electric fields and directed charge flow induced by light excitation were responsible for the enhanced productivity and increased selectivity of water splitting, which is captured in the simulations by our collaborators,” Jain said.
The team still has some challenges to face as they forge ahead. For instance, the repeated use of the nanoparticle-based electrode will inevitably lead to degradation over time, especially under a scaled-up scenario required for industrial application. Additionally, the overall energy efficiency of the process and light management will need further research and improvement.
“What we found with this study presents completely new ways of thinking about electrochemistry and catalysis,” Jain said. “By using light, we enhance the activity of this catalyst, but surprisingly, we also change the selectivity. This will open up new chemical pathways that make different products. And why stop at CO2 reduction or water splitting? This could be applied to many other catalytic reactions important to the chemical industry.”
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Illinois Researchers Maya Chattoraj and Rachel Nixon also contributed to this study. The National Science Foundation, the U.S. Department of Energy, the Robert C. and Carolyn J. Springborn Endowment and the Future Interdisciplinary Research Explorations Grant supported this research.
Jain also is affiliated with the Materials Research Laboratory, physics, and the Illinois Quantum Information Science and Technology Center at Illinois.
Original Article: Switching of electrochemical selectivity due to plasmonic field-induced dissociation; Proceedings of the National Academy of Sciences; DOI:10.2196/49061