Researchers have developed an AI (Artificial Intelligence) model which has the potential to screen heart defects. The model is claimed to be more effective for detecting signs of atrial septal defect than traditional processes.
ASD is a common adult congenital heart disease.
(Source: Pixabay)
Boston/USA – Investigators from Brigham and Women’s Hospital, a founding member of the Mass General Brigham healthcare system, and Keio University in Japan have developed a deep learning artificial intelligence model to screen electrocardiogram (ECG) for signs of atrial septal defects (ASD). This condition can cause heart failure and is underreported due to a lack of symptoms before irreversible complications arise. Their results are published in eClinicalMedicine.
"If we can deploy our model on a population-level ECG screening, we would be able to pick up many more of these patients before they have irreversible damage," said Shinichi Goto, MD, PhD, corresponding author on the paper and instructor in the Division of Cardiovascular Medicine at Brigham and Women’s Hospital.
ASD is a common adult congenital heart disease. It is caused by a hole in the heart’s septum that lets blood flow between the left and right atriums. It’s diagnosed in about 0.1 % to 0.2 % of the population but is likely underreported, Goto said. The symptoms of ASD are typically very mild or, in many cases, nonexistent until later in life. Symptoms include an inability to do strenuous exercise, affect the rate or rhythm of the heartbeat, heart palpitations, and an increased risk of pneumonia.
Even if ASD isn’t causing symptoms, it can stress the heart and increase the risk of atrial fibrillation, stroke, heart failure, and pulmonary hypertension. At that point, the complications of ASD are irreversible, even if the defect is fixed later. If found early, ASD can be corrected with minimally invasive surgery to improve life expectancy and reduce complications.
There are several ways to detect ASD. First, the largest defects can be found by listening to the heart with a stethoscope. But only about 30 % of patients can be discovered this way. Another is by echocardiogram, a time and labor-intensive test that is not a good option for screening. Another test, electrocardiography, or ECG, takes only about a minute, making it possible to use as a screening tool. However, when humans analyze an ECG readout for known abnormalities associated with ASD, there is limited sensitivity for picking up ASD.
To see if an AI model could better detect ASD from ECG readouts, the study team fed a deep learning model ECG data from 80,947 patients over 18 who underwent both ECG and echocardiogram to detect ASD. A total of 857 patients were diagnosed with ASD. The data was collected from three hospitals: two large teaching institutions — one, BWH, in the US and the other, Keio University in Japan, and Dokkyo Medical University, Saitama Medical Center in Japan, a community hospital. The model was then tested using scans from Dokkyo, which has a more general population and isn't specifically screening patients for ASD. The model was more sensitive than using known abnormalities found on ECGs to screen for ASD. The model correctly detected ASD 93.7 % of the time, while using known abnormalities found ASD 80.6 % of the time.
"It picked up much more than what an expert does using known abnormalities to identify cases of ASD," Goto said. One limitation of the study is that the model was trained used samples from academic institutions, which deal more with rare diseases like ASD. All the patients used to train the model were being screened for ASD and received an echocardiogram, so it is not clear how well the model would work on a general population, which is why they tested it in Dokkyo. "The model's performance was retained even in the community hospital's general population, which suggests that the model generalizes well."
The authors also note that even the use of echocardiogram to detect ASD will not find every defect. Some could slip through both the regular screening and the AI model, though these smaller defects are less likely to require surgical closure. “The problem of machine learning is that it's a black box — we don't really know what features it picked up,” Goto said. That means we can’t learn what features to look for in ECGs from the model, either.
Results suggest that the technology could be used in population-level screening to detect ASD before it leads to irreversible heart damage. ECG is relatively low cost and currently performed in many contexts. “Perhaps this screening could be integrated into an annual PCP appointment or used to screen ECGs taken for other reasons,” Goto said.
Disclosures: The study authors declare no competing interests.
Funding: Funding sources for this research include grants from the Vehicle Racing Commemorative Foundation, Japanese Science and Technology Agency (JPMJPF2101), JSR Life Sciences, Taiju Life Social Welfare Foundation, Kondou Kinen Medical Foundation, Research fund of Mitsukoshi health and welfare foundation, Tokai University School of Medicine Project Research and Internal Medicine Project Research, Secom Science and Technology Foundation, and Japan Agency for Medical Research and Development (23hma922012h0001 and 23ym0126813j0002).
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.
Paper cited: Miura K et al. "Deep Learning-Based Model Detects Atrial Septal Defects from Electrocardiography: A Cross-Sectional Multicenter Hospital-Based Study" eClinicalMedicine DOI: 10.1016/j.eclinm.2023.102141