The advantages of moving from a wasteful ‘linear’ economy to a ‘circular’ economy, where all resources are recycled and reused, are obvious. So could we recycle Rare earth elements more efficiently, too? In Frontiers in Bioengineering and Biotechnology, German scientists showed that the answer is yes — with the help of twelve exotic bacteria.
The biomass of some exotic photosynthetic cyanobacteria can efficiently absorb REEs from wastewater.
Rare earth elements (REEs) are a group of 17 chemically similar metals, which got their name because they typically occur at low concentrations (between 0.5 and 67 parts per million) within the Earth’s crust. Because they are indispensable in modern technology such as light emitting diodes, mobile phones, electromotors, wind turbines, hard disks, cameras, magnets, and low-energy lightbulbs, the demand for them has increased steadily over the past few decades, and is predicted to rise further by 2030.
As a result of their rarity and the demand they are expensive: for example, a kilo of neodymium oxide currently costs approximately 200 euros, while the same amount of terbium oxide costs approximately 3,800 euros. Today, China has a near-monopoly on the mining of REEs, although the discovery of promising new finds (more than one million metric tons) in Kiruna, Sweden was announced with great fanfare in January 2023.
Reusing these valuable raw materials would significantly improve independence from China. Now, German scientist found that the biomass of some exotic photosynthetic cyanobacteria can efficiently absorb REEs from wastewater, for example derived from mining, metallurgy, or the recycling of e-waste. The absorbed REEs can afterwards be washed from the biomass and collected for reuse.
“Here we optimized the conditions of REE uptake by the cyanobacterial biomass, and characterized the most important chemical mechanisms for binding them. These cyanobacteria could be used in future eco-friendly processes for simultaneous REE recovery and treatment of industrial wastewater,” said Dr Thomas Brück, a professor at the Technical University of Munich and the study’s last author.
Highly Specialist Strains of Cyanobacteria
Biosorption is a metabolically passive process for the fast, reversible binding of ions from aqueous solutions to biomass. Brück and colleagues measured the potential for biosorption of the REEs lanthanum, cerium, neodymium, and terbium by twelve strains of cyanobacteria in laboratory culture. Most of these strains had never been assessed for their biotechnological potential before. They were sampled from highly specialized habitats such as arid soils in Namibian deserts, the surface of lichens around the world, natron lakes in Chad, crevices in rocks in South Africa, or polluted brooks in Switzerland.
The authors found that an uncharacterized new species of Nostoc had the highest capacity for biosorption of ions of these four REEs from aqueous solutions, with efficiencies between 84.2 and 91.5 mg per g biomass, while Scytonema hyalinum had the lowest efficiency at 15.5 to 21.2 mg per g. Also efficient were Synechococcus elongates, Desmonostoc muscorum, Calothrix brevissima, and an uncharacterized new species of Komarekiella. Biosorption was found to depend strongly on acidity: it was highest at a pH of between five and six, and decreased steadily in more acid solutions. The process was most efficient when there was no ‘competition’ for the biosorption surface on the cyanobacteria biomass from positive ions of other, non-REE metals such as zinc, lead, nickel, or aluminium.
The authors used a technique called infrared spectroscopy to determine which functional chemical groups in the biomass were mostly responsible for biosorption of REEs.
“We found that biomass derived from cyanobacteria has excellent adsorption characteristics due to their high concentration of negatively charged sugar moieties, which carry carbonyl and carboxyl groups. These negatively charged components attract positively charged metal ions such as REEs, and support their attachment to the biomass,” said first author Michael Paper, a scientist at the Technical University of Munich.
The authors conclude that biosorption of REEs by cyanobacteria is possible even at low concentrations of the metals. The process is also fast: for example, most cerium in solution was biosorbed within five minutes of starting the reaction.
“The cyanobacteria described here can adsorb amounts of REEs corresponding to up to ten percent of their dry matter. Biosorption thus presents an economically and ecologically optimized process for the circular recovery and reuse of rare earth metals from diluted industrial wastewater from the mining, electronic, and chemical-catalyst producing sectors,” said Brück. “This system is expected to become economically feasible in the near future, as the demand and market prizes for REEs are likely to rise significantly in the coming years,” he predicted.
References: Rare earths stick to rare cyanobacteria: future potential for bioremediation and recovery of rare earth elements; Frontiers in Bioengineering and Biotechnology; DOI:10.3389/fbioe.2023.1130939
Date: 08.12.2025
Naturally, we always handle your personal data responsibly. Any personal data we receive from you is processed in accordance with applicable data protection legislation. For detailed information please see our privacy policy.
Consent to the use of data for promotional purposes
I hereby consent to Vogel Communications Group GmbH & Co. KG, Max-Planck-Str. 7-9, 97082 Würzburg including any affiliated companies according to §§ 15 et seq. AktG (hereafter: Vogel Communications Group) using my e-mail address to send editorial newsletters. A list of all affiliated companies can be found here
Newsletter content may include all products and services of any companies mentioned above, including for example specialist journals and books, events and fairs as well as event-related products and services, print and digital media offers and services such as additional (editorial) newsletters, raffles, lead campaigns, market research both online and offline, specialist webportals and e-learning offers. In case my personal telephone number has also been collected, it may be used for offers of aforementioned products, for services of the companies mentioned above, and market research purposes.
Additionally, my consent also includes the processing of my email address and telephone number for data matching for marketing purposes with select advertising partners such as LinkedIn, Google, and Meta. For this, Vogel Communications Group may transmit said data in hashed form to the advertising partners who then use said data to determine whether I am also a member of the mentioned advertising partner portals. Vogel Communications Group uses this feature for the purposes of re-targeting (up-selling, cross-selling, and customer loyalty), generating so-called look-alike audiences for acquisition of new customers, and as basis for exclusion for on-going advertising campaigns. Further information can be found in section “data matching for marketing purposes”.
In case I access protected data on Internet portals of Vogel Communications Group including any affiliated companies according to §§ 15 et seq. AktG, I need to provide further data in order to register for the access to such content. In return for this free access to editorial content, my data may be used in accordance with this consent for the purposes stated here. This does not apply to data matching for marketing purposes.
Right of revocation
I understand that I can revoke my consent at will. My revocation does not change the lawfulness of data processing that was conducted based on my consent leading up to my revocation. One option to declare my revocation is to use the contact form found at https://contact.vogel.de. In case I no longer wish to receive certain newsletters, I have subscribed to, I can also click on the unsubscribe link included at the end of a newsletter. Further information regarding my right of revocation and the implementation of it as well as the consequences of my revocation can be found in the data protection declaration, section editorial newsletter.